本书是一本来自软件自动化测试领域资深专家的作品,主要用于推广智能一体化测试理论及应用。作者在书中深入浅出地讲解了自己在银行领域悟出的智能一体化测试这一全新的理论,并介绍了如何对智能一体化测试平台进行需求分析与设计,以期读者能够在自己的组织中成功推广智能一体化测试。本书全面分享了作者推广智能一体化测试的经验,并结合真实案例讲解了如何在银行实施智能一体化测试,从而实现对银行IT系统的全生命周期质量管理。读者在学习过程中,可以深入学习作者已经推广成功的智能一体化测试平台DT(DefectTerminator)的应用方法与实施方案。本书主要为希望大幅提升IT系统质量管理水平的团队创作,特别适合银行、证券、保险、互联网金融等企业的IT人员进行研读。
机器学习需要一条脱离过高理论门槛的入门之路。本书《机器学习篇》从小红帽采蘑菇的故事开篇,介绍了基础的机器学习分类模型的训练(靠前章)。如何评估、调试模型?如何合理地发掘事物的特征?如何利用几个模型共同发挥作用?后续章节一步一步讲述了如何优化模型,更好地完成分类预测任务(第2章),并且初步尝试将这些技术运用到金融股票交易中(第3章)。自然界优选的非线性模型莫过于人类的大脑。《深度学习篇》从介绍并对比一些常见的深度学习框架开始(第4章),讲解了DNN模型的直观原理,尝试给出一些简单的生物学解释,完成简单的图片识别任务(第5章)。后续章节在此基础上,完成更为复杂的图片识别CNN模型(第6章)。接着,本书展示了使用Caffe完成一个完整的图片识别项目,从准备数据集,到完成识别任务(第7章)。后面简单描述
R语言具有上手快、效率高的特点,它横跨金融、生物、医学、互联网等多个领域,主要用于统计、建模及可视化。预测是数据挖掘的主要作用之一,也是大数据时代的核心价值所在。基于R语言来做预测,兼具效率和价值的双重属性,这是本书的一大亮点。本书共分为三部分。*部分讲预测基础,主要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路;第二部分讲预测算法,该部分包含了多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心体会;第三部分讲预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实
这本书通过给出易操作的实践指导、采用简单的例子、激励学生讨论有趣的应用问题,用一种易于理解的方式介绍了机器学习的基本思想。本书主题包括贝叶斯分类器、近邻分类器、线性和多项式分类器、决策树、神经网络以及支持向量机。后面的章节展示了如何把这些简单工具通过“提升”(boosting)的方式结合起来,怎样将它们应用于更加复杂的领域,以及如何处理各种的实践问题。其中有一章介绍了广为人知的遗传算法。
本书关注世界科技创新浪潮,聚焦正在深刻影响智能生活和智能社会的黑科技。我们的日常生活被科技的颠覆式创新孕育的新技术覆盖并深深地影响,它们重塑着经济,改变着我们的生活,甚至开始威胁到人类的存在意义……区块链,人工智能还是数字货币,科技的创新正在重新定义着我们的生活。这些黑科技是怎么来的?它们如何运作?它们有什么样的价值?给我们什么样的选择?本书将诉说我们如何利用这些重大变化重塑未来。
罗伯特·拉戈尼尔著的《OpenCV计算机视觉编程攻略(第3版)》结合C和OpenCV全面讲解计算机视觉编程,不仅涵盖计算机视觉和图像处理的基础知识,而且通过完整示例讲解OpenCV的重要类和函数。主要内容包括OpenCV库的安装和部署、图像增强、像素操作、图形分析等各种技术,并且详细介绍了如何处理来自文件或摄像机的视频,以及如何检测和跟踪移动对象。第3版针对OpenCV版本进行了修改,调整了很多函数和算法说明,还增加了立体图像深度检测、运动目标跟踪、人脸识别、人脸定位、行人检测等内容,适合计算机视觉新手、专业软件开发人员、学生以及所有想要了解图像处理和计算机视觉技术的人员学习参考。
以机器学习中的典型案例为主线,条分缕析梳理阿里云的平台功能,讲解如何用阿里云的机器学习平台来实现各类应用,包括商家作弊检测、生存预测、信用风险预测、用户购买行为预测等,并完整地介绍了机器学习的基本原理与实践技巧。
以机器学习中的典型案例为主线,条分缕析梳理阿里云的平台功能,讲解如何用阿里云的机器学习平台来实现各类应用,包括商家作弊检测、生存预测、信用风险预测、用户购买行为预测等,并完整地介绍了机器学习的基本原理与实践技巧。
本书借助代表当今数据挖掘和机器学习*高水平的著名开源软件Weka,通过大量的实践操作,使读者了解并掌握数据挖掘和机器学习的相关技能,拉近理论与实践的距离。全书共分9章,主要内容包括Weka介绍、探索者界面、知识流界面、实验者界面、命令行界面、Weka高级应用、Weka?API、学习方案源代码分析和机器学习实战。?本书系统讲解Weka?3.7.13的操作、理论和应用,内容全面、实例丰富、可操作性强,做到理论与实践的统一。本书适合数据挖掘和机器学习相关人员作为技术参考书使用,也适合用作计算机专业高年级本科生和研究生的教材或教学参考用书。
R语言具有上手快、效率高的特点,它横跨金融、生物、医学、互联网等多个领域,主要用于统计、建模及可视化。预测是数据挖掘的主要作用之一,也是大数据时代的核心价值所在。基于R语言来做预测,兼具效率和价值的双重属性,这是本书的一大亮点。本书共分为三部分。*部分讲预测基础,主要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路;第二部分讲预测算法,该部分包含了多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心体会;第三部分讲预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实
机器学习需要一条脱离过高理论门槛的入门之路。本书《机器学习篇》从小红帽采蘑菇的故事开篇,介绍了基础的机器学习分类模型的训练(靠前章)。如何评估、调试模型?如何合理地发掘事物的特征?如何利用几个模型共同发挥作用?后续章节一步一步讲述了如何优化模型,更好地完成分类预测任务(第2章),并且初步尝试将这些技术运用到金融股票交易中(第3章)。自然界优选的非线性模型莫过于人类的大脑。《深度学习篇》从介绍并对比一些常见的深度学习框架开始(第4章),讲解了DNN模型的直观原理,尝试给出一些简单的生物学解释,完成简单的图片识别任务(第5章)。后续章节在此基础上,完成更为复杂的图片识别N模型(第6章)。接着,本书展示了使用Caffe完成一个完整的图片识别项目,从准备数据集,到完成识别任务(第7章)。后面简单描述了R