本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
本书(上册)共10章。前5章讲授微分几何入门知识,第6章以此为工具剖析狭义相对论,第7~10章介绍广义相对论的基本内容。本书强调低起点(大学物理系本科2~3年级水平),力求化难为易,深入浅出,为降低难度采取了多种措施。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
微分几何讲义(修订版)
数学符号是数学文献中用以表示数学概念、数学关系等的记号。本书研究了常见的200余个符号的来龙去脉着重探讨了常用的100多个符号的产生、发展历史。作者从卷收浩繁的古算史书中进行考证,以史为据,自成体系,可读性强。
本书由数学通俗文章和讲话的讲稿等组成, 此外还有一篇关于数学史的翻译文章和一个座谈会实录. 数学通俗文章的主题有: 数学概述, 数学的意义;对称; 几何??从熟悉到陌生; 基础数学的一些过去和现状; 数学??简单与高深; 朗兰兹纲领寻根之旅; 黎曼猜想??引无数英雄竞折腰; 简说代数; 表示, 随处可见; 几何表示论; 卡兹旦-路兹蒂格理论: 起源、发展、影响和一些待解决的问题. 翻译文章是韦伊的“数学史: 为什么, 怎么看”. 讲话的讲稿主要包含作者在一些纪念、庆祝、任职、卸任等公开场合上的讲话讲稿. 座谈会实录说的是2014 年作者与怀化学院本科生座谈的记录.
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
在国家自然科学基金委员会天元基金领导小组委托西安交通大学理学院举办的“西部与周边地区高等学校非数学类数学教师培训班”上,12位教授应邀联合开设了“从大学数学走向现代数学”的系列讲座,本书即为该系列讲座的集成。书中各篇从大学数学中的某些基本概念与原理出发,以简短的篇幅阐明这些基本概念、原理如何发展到近代数学的相关分支与内容,使读者能更清楚地了解大学数学与现代数学的联系,从而能从更高的观点和更全面的视角理解大学数学内容。主要内容包括:从代数运算到代数结构、从有限维空间到无限维空间、从函数到算子、从序列收敛到网收敛、从导数到广义导数、从Newton-Leibniz公式到Stokes公式、从Taylor公式到学习理论、从矩阵的特征值到算子的谱、从微分方程到动力系统、从随机变量到随机过程、从数学应用题到数学建模、从Stirling
本书将概率论和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学经济学、化学和生物学等领域中的广泛应用,特别阐述了贝叶斯理论的丰富应用,弥补了其他概率论和统计学教材的不足,全书分为两部分: 部分包括10章,讲解抽样理论、假设检验、参数估计等概率论的原理及其初级应用;第二部分包括12章,讲解概率论的 应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容全面,体例完整,本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为本科生和研究生相关课程的教材。
本书系统阐述线性模型的基本坪论、方法及其应用,其中包括理论与应用的近期发展。全书共分九章,第一章通过实例引进各种线性模型,第二章讨论矩阵论方面的补充知识,第三章讨论多元正态及有关分布。从第四章起,系统讨论线性模型统计推断的基本理论与方法,包括:最小二乘估计、假设检验、置信区域、预测、线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型。
《缩减多体系统传递矩阵法》首次全面系统地介绍了国家重大项目研究成果之一,多体系统动力学多体系统传递矩阵法的理论——缩减多体系统传递矩阵法。该方法具有无需系统总体动力学方程、系统矩阵阶次低且与系统自由度无关、计算速度快、计算稳定性高、程式化程度高的特点,发展了多体系统动力学分析方法,大幅提升了计算能力和性能,为构造多体系统动力学仿真设计大型通用软件提供了快速并稳定的计算基础;揭示了任意多体系统中任意体和铰的任意联接点的状态矢量之间严格的线性传递规律;提供了相关元件和子系统传递方程和传递矩阵的一般形式;针对囊括各种拓扑结构链式、闭环、树形和一般多体系统,提出了4条总传递方程自动推导定理,定义了3种缩减变换,建立了各种元件的缩减传递方程和缩减传递矩阵普遍递推公式,据此形成了适用于各
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。