本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
图论是组合数学中一个重要而且发展迅速的主题,不仅在数学研究中占有重要的地位,在数学奥林匹克竞赛中也是如此。本书介绍了图论的相关知识,全书共分十个章节,分别为:引言、欧拉回路和哈密顿圈、树、色数、平面图、二部图中的匹配、极图理论、拉姆塞理论、有向图、无限图。每一章节中都配有相应的例题及习题,并且给出了详细的解答,以供读者更好地理解相应的内容。本书适合高等院校师生及数学爱好者研读。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
本书主要讲述了数学归纳法在数学竞赛解题中的应用.全书共分为10章,前8章涉及函数与函数方程、不等式、数列与递归关系、数论和组合数学等方面的问题,所汇集的问题均给出了利用数学归纳法解题的翔实解法. 本书适合参加数学竞赛的学生、奥数教练及数学爱好者参考使用.
本书为线性代数入门的科普读物,书中以 如何理解线性代数 如何理解矩阵的基础概念与计算方法 为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
本书主要讨论了代数问题中经常出现的十个主题,每一章都以简短的介绍开始,其中包括一些示例,帮助读者掌握所提出的问题及解法的主要思想。全书分为两部分,第1部分讨论了二次函数,柯西不等式,代数式的极大、极小值问题,复数,拉格朗日恒等式及其应用等内容,并给出相关问题;第2部分为第1部分的所有问题提供了解答。 本书的目标受众包括所有正在接受数学竞赛培训或希望提高代数技能的学生,同时也欢迎数学爱好者参阅。
欧几里得几何以其美丽、优雅和内在的逻辑性吸引了无数人。俄罗斯代数学家Igor R. Shafarevich是20世纪的一位数学领军人物,同时也是一位极优秀的数学普及作家。1943年以后,他一直在苏联科学院斯捷克洛夫数学研究所工作;1958年,他被选为苏联科学院通讯院士。他在本书中以丰富的例证表明,代数在这几方面丝毫不比几何逊色。 本书阐述了代数、数论、集合论和概率论的若干基本内容,却只需要很少的预备知识。本书可作为中学生的拓展阅读材料,也可作为中学数学教师的参考用书。
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用及其通俗的语言介绍了现代数学各个分支的内容,历史发展及其在自然科学和工程技术中的应用。本书内容精炼,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版。每一章介绍数学的一个分支,第一卷的内容包括数学概观、数学分析、解析几何和代数。
卡尔曼滤波技术作为一种很优估计方法,迅速从导航领域推广应用到了目标跟踪、故障诊断、多传感器信息融合以及经济学等诸多领域。本书介绍了卡尔曼滤波的基本原理及其实时应用。本书理论讲解很好透彻,同时结合实时应用分析理论方法,适合作为相关课程的教材或供相关领域的研究人员参考。
20世纪最伟大的数学家之一 Andr Weil 在本书中用真诚朴实的语言讲述了他从童年到1947年秋季的经历。他在书中回忆了主要游历:意大利、德国、瑞典以及英国;然后在印度工作两年多,其间他短暂地遇到了甘地;返回巴黎后参与创立了布尔巴基学派;战争年代继续到访了苏联、芬兰,他被芬兰警察当作苏联间谍,险些被执行死刑,辗转于多个监狱,在鲁昂监狱完成了他最伟大的工作:证明有限域上的光滑射影曲线的黎曼猜想;最后以美洲经历为本书画上句号。 通过阅读本书,读者可以洞察一位深刻思想者的内心,这位思想者具有超强的创造性。本书值得对数学、哲学感兴趣的读者收藏。
初等数学中的一本新书对现有的期刊、文章和书籍能有什么贡献? 这是我们决定写这本书时关心的问题.这个问题的必然性不利于回答, 因为经过五年的写作和反复修改,我们还有一些内容需要补充.这可能 是一个新问题,一个我们认为相关的评论,或者一个解决方案,直到这 个预测性的时刻,我们应该把它交给这个领域的专家来审查.只要熟读 这本书就应该足以确定其目标读者:准备参加国家或国际数学奥林匹 克竞赛的学生和教练.我们更加需要认识到,这些人并不是这项工作的 潜在受益者.虽然这本书包含了从各种数学竞赛和期刊中甄选的问 题,但人们不能忽视数学的经典结果,因为它们超过了有时间限制的竞 赛水平.经典并不意味着简单!这些数学之美不仅仅可以证明初等数学 可以产生珍宝,它们被许多人视为 真正的数学 ,是对超越竞赛的数学 的一种邀
本书介绍了平面几何的相关知识及问题.共分5章,主要包括直线、圆、相似、正多边形与圆周、面积的相关内容,同时收录了相应的习题.本书按照知识点分类,希望通过对习题的实践训练,可以强化学生对平面几何基础知识的掌握.激发读者的兴趣。启迪思维。提高解题能力. 本书适合中学师生、数学相关专业学生及几何爱好者参考使用.
本书是前苏联著名数学家为普及数学而撰写的一部名著,用极其通俗的语言介绍了数学各个分支的主要内容,历史发展及其在自然科学和工程技术中的应用。本书内容精练,由浅入深,只要具备高中数学知识、就能阅读。全书共20章,分三卷出版。每一章介绍一个分支,本卷是第二卷,内容包括:微分方程、变分法、复变函数、数论、概率论、函数逼近论、计算方法和计算机科学等内容。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。此外,斯图尔特教授还记录下了海盗红胡子船长和考古学家科罗拉多 史密斯的寻宝冒险。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2012年版的译文进行了全面整理提升。斯图尔特教授五十多年收藏的更
这是一本介绍中学数学计算技巧的书,本书共分5章:第1章 数、式与形 ,第2章 变换与技巧 ,第3章 速算与近似计算 ,第4章 一题多解 ,第5章 计算与证明 。 本书适合中学师生及师范院校数学系、数学教育专业师生阅读和使用。