本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
本书内容包括行列式、矩阵、n维向量与线性方程组、线性空间、矩阵的对角化、实二次型和线'性变换等线'性代数的基本知识以及基本线性代数问题的计算机实现,通过将线性代数的基本知识与计算机相结合使学生能利用数学软件解决一些简单的线性代数的实际问题。书末还给出了有关的Matlab软件的使用说明。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
本书一方面,以《教师教育课程标准》、《教师资格标准》和《数学学科知识与教学能力》(初级中学)考试大纲为依据,以指导和辅助学生有效整合教师教育相关大学学科知识学习为指向,密切结合学习与应试需求,使学习者通过阅读和学习本教材,具有适应初中教学和和国家教师资格考试相关科目的数学学科知识与教学能力;另一方面,以初中数学教师应具有的数学学科知识与教学能力为核心内容,以已有考试真题和命题趋势为导向解读数学学科知识与教学能力中各类知识的学习要点和应试策略。
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
本书对非线性*化的理论、算法及相关技术作了比较系统的介绍。在内容的选取方面,尽可能避免过分复杂的理论分析,以适应不同专业、不同层次技术人员对*化技术的需求,另外,也尽可能地增加一些数值例子或经济管理方面的应用实例。全书共分9章。*章主要介绍*化的基础理论;第二章介绍无约束*化问题的*性条件以及线搜索技术;第三章主要介绍无约束*化算法,主要有*速下降法、Newton法、共轭梯度法;第四章主要讨论约束优化问题的*性条件;第五章介绍Lagrange对偶理论;第六章介绍线性规划;第七章介绍二次规划的求解算法;第八章介绍一般非线性约束*化问题的罚函数法;第九章给出两种特殊规划:几何规划和多目标规划,并给出一些应用实例。
本书以易于理解的方式讲述了时间序列模型及其应用,主要内容包括:趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差时间序列模型、谱分析入门、谱估计、门限模型.对所有的思想和方法,都用真实数据集和模拟数据集进行了说明. 本书可作为高等院校统计、经济、商科、工程及定量社会科学等专业学生的教材或教学参考书,同时也可供相关技术人员使用.Translation from the English language edition:Time Series Analysis with Applications in R ,Second Edition(ISBN 978 0 387 75958 6)by Jonathan D.Cryer and Kung Sik Chan. Copyright 2008 Springer Science+Business Media,LLC. Springer is a part of Springer Science+Business Media.
这本教材包含了初等数论的基础知识,穿插了有关史料及费马、欧拉、高斯等数论大师的生平事迹,也介绍了许多数论名题及相关进展。本书包括正文7章及附录:自然数的基本性质,整除性、素数及算术基本定理,带余除法、*公因数及*小公倍数,辗转相除法与线性丢番图方程,同余式、剩余类及中国剩余定理,欧拉定理、费马小定理及威尔逊定理,二次剩余理论及其应用,作者提出的十个数论猜想。本书起点较低,在每章后都配有习题,便于具有高中以上水平的读者自学。 本书可作为高等学校 初等数论 课程的入门教材,也可作为高中数学教师的参考用书。
本书采用学生易于接受的方式科学、系统地介绍线性代数的基本内容, 强调适用性和通用性, 兼顾先进性.本书起点低、坡度适中、简洁明了、适于自习. 全书涵盖考研的数学考试大纲有关线性代数的所有内容. 每章配有 A 型和 B 型习题, 书后附有习题参考答案、基于软件 MATLAB 的线性 代数实验及 2006~2015 年硕士研究生入学考试部分线性代数试题.本书不在理论的细枝末节上过分追求, 注重线性代数的思想、理论原理、使用条件、使用方法和结论分析方法的论述,有利于培养学生的综合素质和能力.
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
在人类所有的发明中,数学和诗歌无疑是*古老的。可以说自从有了人类的历史,就有了这两样东西。如果说牧羊人计算绵羊的只数产生了数学,那么诗歌则起源于祈求丰收的祷告。无论数学还是诗歌,它们的故事和触角遍及人类社会的每一个角落,以及历史和生命的每一个瞬时。 《数学的故事》共分三辑,共讲述了20个如诗歌一般优美的数学故事。甲辑是中外或者东西合璧的7个数学故事;乙辑是8个有关数学家的故事,涉及10多位专业或业余的数学家;丙辑的故事围绕5个有趣的数学问题展开,深入浅出且具有一定的挑战性。 为引发同学们、老师们甚至家长们的喜爱,作者在以下几个方面做了努力: 可读性:语言质朴自然,生动有趣,留有余味。 可视性:图文并茂,有些插图是作者亲自在故事发生地拍摄的。 想象力:每则故事都不只是某一位数学家的故事,而是
本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书深入贴近《英语基础教程1》书本中,每一个单元的知识点。针对每个单元的四个章节,一个章节一个针对性练习。练测卷习题依据该章节中的基础词汇,短语,重点句型,语法、单元主题、写作和对口升学考试当中对应的知识点进行编写,由浅入深,紧扣整个单元所有的知识点。一个单元一张检测卷,针对本单元所学内容有一个阶段性的考查。本书在内容编排上,力求循序渐进,高效简短,针对性强的原则,每一个章节的练测卷内容量适中,便于教师安排教学,利于学生理解本章节的重要知识点,通过练习,更好的巩固所学内容。
《张量分析简论(第2版)》是Springer 数学本科生教程 系列丛书之一,适合于工程、物理、数学以及相关应用学科的高年级本科生,可以作为学习连续介质力学和广义相对论的很好的过度教材。这部简明教程还包括给出解答的问题和一些练习。读者有基本微积分和线性代数的知识,并对力学和几何的基本观点熟悉将会更容易学习理解本书内容。第2版增加了不少新的练习,也增加了专门讲述微分几何的章节。
本书缘起于数学大师陈省身先生2003年精心编辑的2004年《数学之美》挂历,这是对数学史高度概括的科普作品,在数学界和高校圈引起了不小的反响。孟道骥教授的这本浅读的小册子,以挂历中每月的数学科普内容为主题,分章进行详细的解读,讲述了复数、正多面体、刘徽和祖冲之、圆周率的计算、高斯、圆锥曲线、双螺旋线、国际数学家大会、计算机的发展、分形、麦克斯韦方程、中国剩余定理等内容,这也是对陈先生普及推广数学文化工作的好纪念。 本书适合一切喜爱数学文化的读者阅读,也可供从事数学普及工作的相关人员参考。