许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为 论小于一个给定值的素数的个数 。在这篇论文的中间部分,黎曼作了备注 一个猜测,一个 假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究 和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立?已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制 术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。在《素数之恋》中,极其明晰的数学阐释文
本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
《2的平方根:关于一个数与一个数列的对话》以师生对话的形式展开讨论。博学的老师引导学生一步步逐渐熟悉数学推理,让学生体会数的概念远比初能想见的微妙得多。年轻的学生被2的平方根这个神奇的无理数所吸引,踏上了一段奇特的数学之旅,随后他又遇见了令他着迷的数列。强烈的好奇心驱使他迫不及待地投入工作,去了解这个神奇的数,了解这个数与数列之间的联系。本书所使用的代数方法相对简单,但非常巧妙,让读者体会到寓教于乐的态度和精神。
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
图论是组合数学中一个重要而且发展迅速的主题,不仅在数学研究中占有重要的地位,在数学奥林匹克竞赛中也是如此。本书介绍了图论的相关知识,全书共分十个章节,分别为:引言、欧拉回路和哈密顿圈、树、色数、平面图、二部图中的匹配、极图理论、拉姆塞理论、有向图、无限图。每一章节中都配有相应的例题及习题,并且给出了详细的解答,以供读者更好地理解相应的内容。本书适合高等院校师生及数学爱好者研读。
本书的作者都是杰出的数学家,也都有一个业余爱好,魔术和杂耍。从他们的这本书中,你可以了解到一些花式洗牌法的数学性质;一些用到中国古代占卜书《易经》的戏法,还有奇偶性是怎样在魔术中起作用的。 它不仅是一本出色的、写法不拘一格的数学魔术导引,而且在书的末尾作者还提供了为数学魔术做出巨大贡献的魔术师的照片和传略。 不会再有一本如此条理清晰地、如此饶有风趣地对广阔的数学魔术领域做出一番综述的佳作了。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书是解读望月新一 跨视宇Teichm ller理论(IUT理论) 的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本 IUT理论 的解读手册。书中侧重解读 IUT理论 的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与经典数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解 IUT理论 的入门读本,也适合作为学生了解数学思考方法的参考读物。
《从矢量到张量:细说矢量与矢量分析,张量与张量分析》是 高等数学启蒙小丛书 系列中的一本。 张量的概念由 G.Ricci 于19世纪末提出的,研究张量旨在为几何性质和物理规律的表达寻求一种在坐标变换下不变的形式,在相对论中得到广泛应用。它既是物理学概念,又是一个数学的概念,是微分几何研究的一个方向,也是现代机器学习的基础。但是如果直接讲解,读者很难理解。 既有大小又有方向的量(在物理学中称作矢量,在数学中称作向量。) 则相对容易理解,作者以此为起点,分为六个部分,二十个章节,一步步向读者介绍,直至张量。 如:部分从矢量的袋鼠运算讲起,详述矢量的矢量混合积;第二部分,引入矢量三重系;第三部分,先讲解变矢量的微分运算;第四部分,讨论矢量场的线积分与面积分;第五部分,从曲线坐标入手,讨论曲线坐标下的向
本书从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。此外,斯图尔特教授还记录下了海盗红胡子船长和考古学家科罗拉多 史密斯的寻宝冒险。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2012年版的译文进行了全面整理提升。斯图尔特教授五十多年收藏的更
20世纪最伟大的数学家之一 Andr Weil 在本书中用真诚朴实的语言讲述了他从童年到1947年秋季的经历。他在书中回忆了主要游历:意大利、德国、瑞典以及英国;然后在印度工作两年多,其间他短暂地遇到了甘地;返回巴黎后参与创立了布尔巴基学派;战争年代继续到访了苏联、芬兰,他被芬兰警察当作苏联间谍,险些被执行死刑,辗转于多个监狱,在鲁昂监狱完成了他最伟大的工作:证明有限域上的光滑射影曲线的黎曼猜想;最后以美洲经历为本书画上句号。 通过阅读本书,读者可以洞察一位深刻思想者的内心,这位思想者具有超强的创造性。本书值得对数学、哲学感兴趣的读者收藏。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。