这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
克莱因(Felix Klein,1849 1925)是19世纪末、20世纪初世界数学中心 德国哥廷根学派的领袖,并且热衷于数学教育的改革。本书是具有世界影响的数学教育经典,全书共分3册:册,算术、代数、分析;第二册,几何;第三册,精确数学与近似数学。本次影印前两册的英译本,译者为赫德里克(Earle Raymond Hedrick,1876 1943)和诺布尔(Charles Albert Noble,1867 1962),册用美国Dover图书公司的1945年版,第二册用Dover的1939年版,并将两册合刊。
《轨道法讲义(英文版)》向非专家描述了轨道法的要义,第壹次系统、详细、自足地阐述了该方法。全书从一个方便的“用户指南”开始,并包含了大量例子。《轨道法讲义(英文版)》可以用作研究生课程的教材,适合非专家用作手册,也适合数学家和理论物理学家做研究时参考。
本书主要围绕世界著名的图谱专家Cvetkovic提出的极值排序问题进行研究,对外学者关于图谱极值问题在不同研究分支的研究方法、研究技巧与研究结果进行系统的总结,并作进一步研究,对多个未曾解决的问题进行逐一解答。内容包括:①图谱的基本概念和基本性质,②给定度序列图类中具有谱半径的极图结构,③依度序列比较为基础的谱半径的比较方法,即优超理论,④以度为基础的谱半径的比较方法和证明思想,⑤给定阶数和圈数的图类中谱半径的排序问题、排序结果和排序方法,⑥给定悬挂点数、圈数以及阶数的图类中具有谱半径的极图问题的研究结果和研究方法,⑦零度排序问题的研究结果和方法,⑧代数连通度排序问题的研究结果和方法。
本书旨在介绍在高中数学奥林匹克竞赛、自主招生考试等中出现的常见重要不等式及其变形、拓展的应用。全书共8章,相互独立,每章精选了外数学竞赛中的典型不等式问题为例题,从系统观的视角,深入讲解每个问题,提炼了这些常见重要不等式的使用技巧,帮助读者建立不等式证明的“结构观”方法。 本书集普及性、理论性、实用性于一体,适合中学生、中学数学教师等阅读使用,也是学校开展教师培训与拓展性教学的好素材,同时可供数学爱好者参考。对参加全国高中数学联赛、高校自主招生等考试的考生也会有较大的帮助。
《关于曲面的一般研究》是关于曲面的几何性质研究的开创性工作,它开创了微分几何的新时代,高斯以前的几何学家在研究曲面时总是将其与外围空间相联系,高斯的出发点是这样的问题:“我们是否可以从曲面本身的度量出发决定曲面在空间的形状?”因而,高斯在这篇论文中提出了一个全新的概念——一个曲面本身就是一个空间,这种思考具有本质的意义,这是高斯内蕴微分几何思想的出发点,高斯正是从这个想法出发,引出曲面的参数表示、曲面上的弧长元素(即第壹基本形式),以及由第壹基本形式出发,研究弯曲的曲面上的内蕴几何问题,得到了高斯曲率的计算公式,进而证明高斯曲率是在等距变换下的不变性质(高斯的绝妙定理)以及总曲率与测地三角形内角和的关系公式(高斯—博内定理)等内蕴微分几何的重要定理,从而创立了内蕴微分几何学
《整数拆分》主要讨论组合数学和堆垒数论中的整数分拆理论. 在内容方面,首先介绍了研究整数分拆的重要工具:双射证明、Ferrers图和生成函数,并以此证明了的 Euler恒等式和Euler五角数定理. 《整数拆分》取材广泛,不仅讨论了Rogers-Ramanujan恒等式、阶梯教室分拆、平面分拆等问题,还建立了整数分拆与 Young 表、钩长公式、偏序集等其他数学对象之间的紧密联系. 在行文方面,作者在力图使《整数拆分》保持通俗易懂、深入浅出的风格之时,又尽量不失逻辑的严谨性. 从而使得一个高中生也可以轻松地阅读《整数拆分》的绝大部分内容. 此外,作者还提供了许多优质的练习题并且合理地区分了难度,以使不同层次的读者都能从中充分受益.
《极小曲面教程(英文版)》内容简介:极小曲面可追溯到欧拉和拉格朗日以及变分法发轫的年代,它的很多技术在几何和偏微分方程中发挥着关键作用,例子包括:源自极小曲面正则性理论的单调性和切锥分析,基于Bernstein的经典工作大值原理的非线性方程估值,还有勒贝格的积分定义——这是他在有关极小曲面的Plateau问题的论文中发展出来的。 《极小曲面教程(英文版)》从极小曲面的经典理论开始,以当今的研究专题结束。在处理极小曲面的各种方法(复分析、偏微分方程或者几何测度论)中,作者选择了将注意力放在这个理论的偏微分方程方面。《极小曲面教程(英文版)》也包含极小曲面在其他领域的应用,包括低维拓扑、广义相对论以及材料科学。 《极小曲面教程(英文版)》的预备知识仅要求了解黎曼几何的基本知识并熟悉大值原理。