本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛 数论知识教材. 书中涵盖了整除、公约数、算术基本定理、数论函数、同余方程、模 p 多项 式、二次剩余、p进赋值等主题.通过精彩的例题重点展现了带余除法、裴蜀定理、 高斯弓I理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估 计、局部一整体原则的应用.课后共有二百多道习题供练习. 本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的 人员参考使用.
《GeoGebra与数学实验》分两部分,部分详细介绍动态工具GeoGebra的基本操作方法;第二部分是基于GeoGebra平台的数学实验,即运用该平台将数学的内容及相关问题从几何、代数两个方面呈现出来,运用技术手段描述数学问题,理解数学问题,解决数学问题,探究数学问题,揭示数学本质,展示数学智慧,体会数学价值,享受数学之美,了解数学艺术。GeoGebra平台能直观呈现小学、初中、高中乃至大学的所有数学基本内容,是发展学生数学素养的智慧平台。
本书根据作者20 多年来在德国和中国开设数学物理方法讲座内容及相关的研究成果提炼而成。其主要内容包括傅里叶级数、傅里叶变换、拉普拉斯变换、数学物理方程的建立、分离变量法、本征函数法、施图姆一刘维尔理论、行波法、积分变换法、格林函数法、贝塞尔函数、勒让德多项式、量子力学薛定诗方程等。本书注重自身理论体系的科学性、严谨性、完整性与实用性,将中国传统教材讲授内容与国外先进教材相结合、教学实践与其他相关课程的需要相结合、抽象的数理概念与直观的物理实例相结合、经典的数理方法与新兴交叉学科的生长点相结合、基础的数理知识与科学前沿中的热点问题相结合。本书既可为教学所用,又可适应科研需要,同时,附有大量不同类型的综合性例题,便于不同层次读者学习掌握分析问题与解决问题的思路和方法。
《数学史概论(第6版)》的一个重大补充是Jamie Eves写的文明背景。这是为了满足《数学史概论(第6版)》的那些早期的使用者的要求而写的,他们认为:把不同时代和时期的数学史放到更加深厚的文明背景上去考察,将有助于学生的理解。聪明的学生在着手探讨某些章节的历史资料之前,应该仔细地阅读其文明背景。《数学史概论(第6版)》增添了10张新的图片资料和16张数学家的照片。参考文献也大为扩展了。
内容简介本书介绍了用 GeoGebra软件创建物理积件的方法,共有62个案例,涉及高中物理中静力学、万有引力、机械波、磁场等内容。每个案例都用图文介绍创建方法,扫描二维码观看视频,使得学习更加自主有效。本书还介绍了GeoGebra 软件处理实验数据、求高次方程根、gif 动图的生成等功能,读者可以通过案例学习 GeoGebra软件,进一步制作自己需要的积件,教师可以直接使用书中积件进行教学。本书可作为高中物理教师信息技术培训教材、高中物理教师制作积件的自学教材、高校物理师范生培训信息技术的教材,也可以作为高中物理教学研究人员的参考资料。
本书主要介绍了高考数学中圆锥曲线的内容,通过系统地梳理十几年来圆锥曲线高考真题和模拟试题,从圆锥曲线的知识点出发,以解题方法为分类标准,直击圆锥曲线的重、难点,归纳出圆锥曲线的热点题型,总结出圆锥曲线的解题方法,整理出圆锥曲线的解题技巧,并以此帮助读者建立趋于完善的圆锥曲线解题框架.读者可以通过阅读本书全面地了解高考数学中圆锥曲线试题的命题趋势,通过命题趋势洞察解题方向,从而能够更好、更快地掌握高考数学中的圆锥曲线知识. 本书适合高二、高三的学生学习使用,希望通过学习本书,同学们能更好地解答高考数学中的圆锥曲线压轴题.
本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划模型,层次分析模型,随机模型,动态规划模型,图论模型,短路模型,网络流模型,数学建模竞赛案例选讲,MATLAB软件使用简介等。
本书的第1章到第7章介绍了一般线性代数课程包含的内容,在此基础上还介绍了仿射空间、射影空间、外积与外代数、二次曲面、双曲几何,给出了群、环和模的基本概念,后还阐述了表示论的基础知识.本书是关于线性代数的讲义,对于一些重要的知识和需要仔细思考的细节,作者会不惜笔墨力图把问题讲清楚,这是本书与同类书籍相比的一大优点.本书作者是优秀的数学家与数学教育家,读者不仅能从本书中学到基础的数学知识,还能从中理解作者对代数学的感悟. 本书适合于数学系专业的师生以及数学爱好者参考使用.
《无穷分析引论(上)》是作为微积分预备教程,为弥补初等代数对于微积分的不足,为学生从有穷概念向无穷概念过渡而写,读者对象是准备攻读和正在攻读数学的学生、数学工作者和广大数学爱好者。《无穷分析引论(上)》在数学史上地位显赫,是对数学发展影响大的七部名著之一。
本书介绍了45个著名数学问题的极富创造性和独具匠心的证明。其中有些证明不仅想法奇特、构思精巧,作为一个整体更是天衣无缝。难怪,西方有些虔诚的数学家将这类杰作比喻为上帝的创造。这不是一本教科书, 也不是一本专著,而是一本开阔数学视野和提高数学修养的著作。希望每一个数学爱好者都会喜欢这本书,并且从中学到许多东西。 第六版在上一版的基础上进行了扩充和修订,其中包含了一个关于Van der Waerden积和式猜想的全新章节,以及其他章节中高度原创而优美的新证明。 2018年 Steele数学阐释奖 颁奖词节录: 想要写出一部可以被各个层次和背景的人阅读和欣赏的数学书几乎是不可能的,但Aigner和Ziegler以精湛的文笔完成了这一壮举。 这本书对数学有着不可估量的作用,为非数学家阐明了当数学家在谈论美时他们在谈论什么。
本书源于科学讨论,这也决定了它以独特的结构呈现,旨在展示科学的真谛:物理学没有永恒的真理,而是需要持续不断的质疑和讨论来推动其发展。 第一章汇聚了数学家、理论物理学家、实验物理学家和哲学家的广泛讨论,探索科学的本质及其发展。这一章开阔了思维的视野,让人们意识到科学是一个充满挑战和探索的领域。 第二章专注于量子场论的详尽介绍,深入解析其在标准模型中的重要性。这一章提供了量子场论的专业化知识,有助于读者更好地理解其在基本粒子物理学中的应用。 第三章的注释部分包含了大量的文献和历史知识,为读者提供了进一步深入了解相关领域的资源。这些注释的内容非常珍贵,可以进一步拓展读者对科学发展历程的理解。 通过阅读本书,读者将能够体会到科学界对问题的多元观点,并了解到科学是一个不断演进和前行的领域
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,第一卷为单变量情形,第二卷为多变量情形。 第一卷中译本分两册出版。本书为第一卷第一分册,包括前三章,主要介绍函数、极限、微分和积分的基本概念及其运算。本书包含大量的例题和习题,有助于读者理解本书的内容。
本书极具特色,它既不是一般的数学教材也不是一般的数学史教材,而是一本通过数学史来讲授数学的教材,本书的作者通过讲述某些数学论题,组织与之相关的概念、人物、思想、问题的背景及发展中的故事等材料,赋予读者数学是统一的观点。 本书原版自1989年出版版以来,至今一直受到数学评论界的高度评价和读者的欢迎。本书将对提高数学专业师生及广大爱好数学人士的数学修养很有价值。第三版在原来第二版的基础上做了不少修订, 新增了部分章节并添加了很多练习,将带给读者更多的惊喜! 本书包含了诸多在一般的本科生数学史教材中不常见的有趣的主题。事实上,这些主题如果从历史的角度来阐述,将能使学生更好地理解和欣赏其中的数学思想 David Parrot,澳大利亚数学会 本书非常生动且言简意赅 不仅能激发学生和教师的兴趣,对广大数学爱好
《数学奥林匹克中的欧几里得几何》较系统地介绍了当今数学奥林匹克竞赛中几何试题所涉及的一些热点知识,如有向角、等角共轭点与等距共轭点、根轴与根心、完全四边形、调和点列等,还给出了这些几何试题的各种构型及一些重要方法,如三角法、面积法、解析法、复数法、射影几何方法等,还搭配了精选的例题,以及超过300道选自各地数学竞赛的练习题。 《数学奥林匹克中的欧几里得几何》还对欧拉、帕斯卡以及其他数学家的经典结果进行了介绍。 《数学奥林匹克中的欧几里得几何》是一本富有挑战性的解题指导书,既适合准备参加全国或者国际数学竞赛的学生和想要讲授荣誉课程的教师阅读参考,又适合高等院校相关专业研究人员及数学爱好者参考使用。
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量*手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是著名数学家的贡献,是全书的一大特色。本书所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
本书详尽地介绍了泛函分析的基本内容与方法,并结合理论介绍了泛函分析对各种分析问题的应用。本书的内容包括预备知识、Banach空间及Hilbert 空间的一般理论、线性算子的一般理论、赋范环和谱表示、向量格及其表示等。作为应用,本书还介绍了广义函数、Fourier变换以及偏微分方程、半群的分析理论、遍历理论与扩散理论、线性与非线性发展方程的积分等。 本书可作为高等学校数学专业泛函分析方向本科生及泛函分析、偏微分方程、概率论等专业研究生的参考书,对于纯粹与应用数学工作者以及理论物理工作者也有一定参考价值。
Jeremy Gray在本书中生动地叙述了欧氏几何、非欧几何和宇宙形态相对论思想的发展史。 欧几里得几何的平行公设在数学史上占有独特的地位。在这本书中,Jeremy Gray 回顾了证明该假设的经典尝试的失败,然后展示了 Gauss、Lobachevskii 和 Bolyai 的工作如何通过构建平行假设失败的几何来奠定现代微分几何的基础。这些研究反过来又促成了Einstein狭义相对论和广义相对论的形成,而这些理论构成了今天我们对宇宙概念的基础。 作者已尽一切努力将阅读难度保持在限度。本书可读性很强,包含了大量的历史和数学材料,适合理工科和数学专业的本科生阅读。 在第二版中,作者更新了大部分材料,并增加了一章,介绍了阿拉伯人对数学史这一迷人领域的贡献。 第二版非常值得一读,它既令人兴奋又发人深思。 New Scientist 版书评:Jeremy Gray提供了一个极好的阐述,讲述了一个
《无穷分析引论(下)》为微积分预备教程,为弥补初等代数对于微积分的不足,以及为学生从有穷概念向无穷概念过渡而写,读者对象是数学工作者和有一定数学基础的广大数学爱好者。该书在数学史上地位显赫,是对数学发展影响大的七部名著之一。
数学是什么?它是如何被创造出来的?过去与现在,创造和实践它的人又是谁?人们能描绘出它的发展,它在科学思想史中所扮演的角色并预测它的未来吗?本书试图对这些问题的本质,以及这个主题的范围和深度提供一些浅见。 本书首先讨论关于整数的问题,其中出现了无穷的概念,并通过关于数与几何对象的更抽象概念的演变而发展。作者展示了数学家如何来考虑一般变换的群,继而考虑诸如空间这些对象的集合,他们尝试如何建立一般的结构理论。本书还考虑了数学与实验科学之间的关系,高速计算机对数学实验范围的深远影响,以及数学的进展取决于 发明 和 发现 程度的问题。对于数学家、物理学家或任何学习数学思想演变的学生来说,这项备受关注的研究提供了一项对数学本质的激发性研究。
本书共包含8章内容,给出了252个不等式的相关示例及其理论,并对105道不等式相关的习题进行了详细解答,同时还给出了77个不等式附加的有趣问题,进一步加强了本书的阐述.本书在前7章中为了帮助读者熟悉和掌握不等式的相关概念,强调了几个策略和重要的引理,本书的内容是代数思想与教学经验相结合的结果. 本书适合高等院校师生和对此部分感兴趣的读者阅读收藏.
这是作者继《星际迷航记》之后,又一本引人入胜的几何学通俗读物。书中借由欧几里得、笛卡儿、高斯、爱因斯坦与威腾等的故事,来说明人类理解自身所处时空的五次革命性几何学发展历程。 欧几里得的《几何原本》开启了人类探究几何学的一扇窗,并引进了抽象化逻辑思维证明。这是几何学*次革命性的发展。 几何学第二次革命性的发展是由笛卡儿解析几何所开启的。坐标系统的引进可说是西方近代科学发展的重要里程碑,它巧妙地结合了几何图形与代数运算,展现了图表的魅力。 高斯与黎曼等人开启了非欧几何学的大们,也开始理解到空间是可以弯曲的。代表了几何学的第三次革命。 爱因斯坦提出狭义及广义相对论,这是几何学第四次革命性的发展,也是人类有史以来,对时间、空间、质能与引力等基本观念所提出的*震撼性的思想革命。