本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
本书荣获2023年度Steele数学阐述奖,中文版首次出版! 本书是偏微分方程领域权威著作的第二版。它全面概述了现代技术在偏微分方程理论研究中的应用,其中特别强调非线性方程。本书内容广泛、论述清晰,这使其成为研究生偏微分方程课程的优秀教材。作者在第二版中做了许多修改,其中包括: - 新增一个关于非线性波动方程的章节; - 新增80多道习题; - 增加几个新的小节; - 大大扩充了参考文献。 第一版的书评: 我在常规的偏微分方程课程以及专题课程中都用过这本书。它巧妙地整合了深刻的洞察力和丰富的技术细节 Evans的书证明了他对该领域十分精通,并且表述清晰易懂。 Luis Caffarelli,得克萨斯大学 用Evans的书来教学非常有趣。它解释了许多偏微分方程的基本思想和技巧 每个学习分析的研究生都应该读读它。 David Jerison,麻省理工学院 我用这本书
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本试卷根据《大学数学课程教学基本要求》及《全国硕士研究生招生考试数学考试大纲》编写而成,是配套高等教育出版社出版、同济大学数学科学学院编写的《高等数学上册》第八版的同步测试卷。 本试卷章节内容安排与教材同步,包含七章及期中、期末18套试卷及试卷习题解答,知识点思维导图(配套知识点视频),考研真题及解答。本试卷深度融合信息技术,配备了60个高等数学知识点视频、43个典型例题精解视频、12个同步测试卷解题视频,以及330余道基本概念自测题及解答。 本试卷可供大学一至四年级学生同步训练、期中期末考试自测及考研备考刷题用。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,介绍坐标法,以平面解析几何为主,还包括一些代数问题,给出复数的几何表述以及多项式的复变函数表述,从而能够证明高等代数基本定理。本书还介绍空间中的笛卡儿坐标和立体解析几何,可供喜欢数学的高中生以及中学和大学的教师参考。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书结合当前江苏省专转本选拔考试高等数学考纲要求,其编写目的是为广大考生提供一本适用、高效的复习资料,内容包括极限和连续、一元函数微分、一元函数积分、多元函数微分、多元函数积分、微分方程、级数、行列式、矩阵及其运算、线性方程组的解等。本书严格按照江苏省专转本选拔考试高等数学考纲中各章的顺序配备练习,这些题目与历年考题仿真度极高,既覆盖了大纲范围内的重点和难点,又十分注重解题技巧和方法,考生通过考前强化训练,有望获取高分甚至满分。
贝叶斯方法因其灵活性且可以轻松地将相关性和层次结构正式纳入数据中,所以对包括空间和时间信息在内的大型数据集建模尤为有效。然而,其所依赖的诸如马尔可夫链蒙特卡罗(MCMC)等经典模拟方法在计算上会使之变得不可行;本书所介绍的积分嵌套拉普拉斯近似(INLA)方法则可作为一种计算有效且强有力的MCMC的替代方法。 本书介绍了贝叶斯方法的基本范式,并阐述了相关的计算问题;详细介绍了 INLA 方法和 R-INLA 软件包背后的理论,并把重点聚焦在区域和点参考数据的空间和时空建模上。 全书将详细的理论和实际数据分析相结合,对任何水平的读者都会大有裨益。所有示例都提供基于R-INLA的代码,其数据集可在INLA 网站获得,这对于想了解INLA 方法或提高其实践能力的应用研究人员来说,是一个极具吸引力的特点。
本书是与同济大学数学科学学院编写的《高等数学)(第八版)相配套的学习辅导书,由同济大学数学科学学院的教师编写。本书内容由两部分组成,第一部分按《高等数学》(第八版)上册的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了归纳小结,有的提供了多种解法;第二部分是全国硕士研究生招生考试数学试题选解,所选择的试题以工科门类为主,少量涉及经济学和管理学门类试题:并以数字资源形式,提供近年全国硕士研究生招生考试涉及《高等数学》上册的部分试题及参考解答。本书对教材具有相对的独立性,可为学习高等数学的工科和其他非数学类专业学生以及复习高等数学准备报考硕士研究生的人员提供解题指导,也可供讲授高等数学的教师在备课和批改作业时参考。
Paul Erd?s在其一生中发表的论文比任何其他数学家都多,尤其是在离散数学领域。他善于发现漂亮且陈述简洁的问题,他的解决方案对整个数学界产生了深远影响。这本引人入胜的书籍专为学生撰写,通过提出引发Erd?s兴趣的问题及其处理这些问题的卓越方法,向读者提供了一本易于理解的离散数学入门书籍。书中包括年轻时Erd?s证明的Bertrand假设、Erd?s-Szekeres幸福结局定理、De Bruijn-Erd?s定理、Erd?s-Rado 系统、Erd?s-Ko-Rado定理、Erd?s-Stone定理、Erd?s-R nyi-S s友谊定理、Erd?s-R nyi随机图、Chv tal-Erd?s关于Hamilton环的定理,以及Erd?s的其他成果;另外还有一些与其工作相关的成果,如Ramsey定理或关于弱 系统的Deza定理。附录涵盖了通常在入门课程中缺失的内容。书中穿插了关于Erd?s的个人轶事,提供了与这位传奇合作者互动的一些幕后故事。
本书面向数学专业核心基础课高等代数教学,精选了近年来的全国高等学校硕士研究生入学考试题,特别是“双一流”建设高校的试题,同时还包含了全国大学生数学竞赛、Putnam数学竞赛、IMC国际数学竞赛等历届试题中与高等代数有关的试题。全书融汇了作者本人多年从事高等代数教学的感悟与经验,采用典型分类、多点强化、翻转解析、灵活点评等方法,帮助读者理解基本概念、熟悉基本理论、掌握基本方法,从而提高解题能力、培养创新思维。 本书叙述严谨、题型丰富、可读性强,可作为学习高等代数的辅导读物或考研与竞赛复习的资料,也可供高等学校教师作为教学参考书。
本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书是为配合清华大学电子学教研组编,童诗白、华成英原著,华成英主编的《模拟电子技术基础(第六版)》的使用而编写的,对教材中的每一章均按“内容概要”“难点释疑”“例题精解”“习题解答”四个部分编写,提炼重点,解决难点,示范性地分析和解决问题。本书既可作为教师手册,又可作为学生的辅导教材,还可作为自学者的参考书。
本书是理工科、技术学科、经济与管理、医学、农林等类学生学习高等数学课程的学习辅导书。全书共八章:极限与连续,一元函数微分学,一元函数积分学、空间解析几何、多元函数微分学,多元函数积分学、级数和常微分方程。本书重视教学内容与习题解析的同步衔接,由浅入深地讲解了大量例题,同时注重整合知识,科学地指导学生进行解题的训练与复习,并提供了进一步深入学习研究的习题。本书的深度和广度能适应大多数专业的数学学习需要,同时对于有志报考研究生的学生来说,也是一本较全面的复习用书。
本书是普通高等教育“十三五”规划教材、全国高等医药院校规划教材《医药高等数学》(第5版)的配套教材,也是本书的第4版。全书分10章,包括一元函数微积分、空间解析几何、多元函数微积分、微分方程与无穷级数等。《医药高等数学》侧重于理论,本书侧重于理论知识的归纳总结、各类各层次习题的分析与解法,它有利于学生对高等数学的概念与理论的理解,有利于培养学生归纳总结、分析解决问题的能力,有利于学生对运算和方法的掌握,也有利于沟通教与学两个教学环节。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。