本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书是高等学校文科(包括经管类)各专业的数学教材,分上、下两册。上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型。下册含多元函数的微积分、常微分方程和概率统计部分,内容包括多元函数的微分、二重积分、无穷级数、常微分方程、随机事件的概率、随机变量及其概率分布、数理统计初步。各章均配有适当、适量的习题供读者学习巩固。
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
配套教材的编制有利于学生掌握教材的重点、难点,起到教学大纲的作用,又可使学生对课堂知识进行复习、练习,加深对课堂知识的了解和掌握,同时,配套教材还可以将课堂中因为学时限制而不能详细讲解的内容进行扩展学习。
《高等数学习题集》(第四版)是与同济大学数学系编写的《高等数学及其应用》(第二版)及吴赣昌主编的《微积分》(经管类 第三版)配套的本科院校工科类和经管类各专业学生课后综合性练习或复习用书。本习题集是在前三版习题集基础上结合新采用的教科书精细修改,增减部分内容而编写的。习题集每节后有工科类、经管类共同练习的习题,也有工科类与经管类不同的习题。每章后面还有 自我检测题 和 提高题 。在工科类或经管类题目的题号和相关节号前加 △ 或 ○ 以示区别。工科类和经管类通用的题目不加记号,个别专业使用的特殊习题在节号前加 * 号。本次习题集修订时特别增加2018年全国硕士研究生入学统一考试数学一、二、三试题和答案,供继续深造或将来报考研究生的学生尽早了解考研时高等数学等对考生的要求。
本作业集为适应应用型本科人才的培养要求而编写,分为A、B两册. 本册为A册,内容涉及多元函数微分法及其应用(多元函数的基本概念,偏导数,全微分及其应用,微分法在几何上的应用,多元函数的极值及其求法)、重积分(三重积分的概念及其计算法,利用柱面坐标计算三重积分)、曲线积分与曲面积分(格林公式及其应用,对面积的曲面积分,对坐标的曲面积分)、无穷级数(常数项级数的概念和性质,常数项级数的审敛法,函数展开成幂级数)和微分方程(微分方程的基本概念,可分离变量的微分方程)。 此外,附录中还给出了习题的参考答案。
本书是按照*大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合数年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书为上册,是一元函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当降低了学习难度,对部分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
本书是国家工科数学教学基地之一的哈尔滨工业大学数学系,根据数学教学改革成果而编写的系列教材之一。全书共九章,内容包括:随机事件与概率,条件概率与独立性,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征与极限定理,数理统计的基本概念,参数估计,假设检验,单因素试验的方差分析及一元正态线性回归。每章后的习题及书末的补充题收录了较多的应用题及历年工学、经济学硕士研究生的入学考试题。
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
一、本章内容概览:对本章知识进行简要的概括。 二、本章知识图解:用网络结构图的形式揭示出本章知识点之间的有机联系,以便于学生从总体上系统地掌握本章知识体系和核心内容。 三、本节内容讲解:包含本节考查要点、教材知识全解、典型例题解析三大模块。 1.本节考查要点:对本节出现的知识点简洁而全面的梳理。 2.教材知识全解:用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题以及各类考试中经常考查的重要知识点; 3.典型例题解析:这一部分是每一节讲解中的核心内容,也是全书的核心内容。作者基于多年的教学经验和研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点归纳为一个个在考试中可能出现的基本题型,
本书是编者根据多年的教学经验,结合高等学校经济管理类本科专业微积分课程的教学大纲及近几年的考研大纲编写而成的。 本书内容共分8章,分别为:函数、极限与连续,导数与微分,中值定理与导数的应,不定积分,定积分及其应用,多元函数微分学与积分学,无穷级数,微分方程与差分方程。 本书结构严谨、逻辑清晰、概念准确。其主要特点在于:注重各个知识点的衔接,内容上具有足够的理论深度,表达上尽可能深入浅出;重视例题、习题的设计和选配;内容编排上尽可能合理,尽量减少不必要的叙述;注重经济应用。
习题集与现行的全国高等中医药院校本科教学大纲一致,与规划教材内容一致。习题覆盖教材的全部知识点,对必须熟悉、掌握的 三基 知识和重点内容以变换题型的方法予以强化。内容编排与相应教材的章、节一致,方便学生同步练习,也便于与教材配套复习。题型与各院校各学科现行考试题型一致,同时注意涵盖国家执业中医师、中西医结合医师资格考试题型。命题要求科学、严谨、规划,注意提高学生分析问题、解决问题的能力,临床课程更重视临床能力的培养。为方便学生全面测试学习效果,每章节后均附有参考答案。 实验指导在全国高等中医药院校本科教学大纲的指导下,结合各高等中医药院校的实验设备和条件,本着求同存异的原则,仅提供基本实验原理、方法与操作指导,相关学科教师可在实际教学活动中结合本校的具体情况,灵活变通,
本书是普通高等教育“十三五”规划教材,涵盖了*指定的大学本科高等数学教学基本要求的内容,全书分为上、下两册,共分为15个模块.上册主要内容为函数、极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用等7个模块;下册内容为微分方程、向量代数与空间解析几何、多元函数微积分、无穷级数共分为8个模块.本书内容深入浅出,结构严谨,体系新颖,例题典型,注重应用,每个模块都配有不同类型的习题,重视对学生应用数学知识解决实际问题能力的培养.
本书基本内容是依据*数学基础课程教学指导分委员会制定的经济类理科本科微积分课程教学基本要求而确定的,根据编者长期在经济类高校担任《经济数学》课程教学和科研工作的经验而编写的,同时还参考了近年来经济管理类硕士研究生入学统一考试数学考试大纲。全书分为上、下两册,共十一章,本书为下册,内容多元函数微分学、重积分、无穷级数、微分方程及差分方程。书末还附有常用三角函数恒等式、指数对数函数的运算性质、基本初等函数的图形及主要性质、二阶和三阶行列式、积分表、极坐标、习题答案与提示。本书可作为高等学校经济管理类本科专业高等数学课程内容的教材,也可作为其他非数学类本科专业学生的教材或参考书。
本书是全国医药高等职业教育药学类规划教材之一,是依照*发展规划纲要等相关文件要求,根据《高等数学》教学大纲的基本要求和课程特点编写而成的,内容上涵盖了极限与连续、导数部分、积分部分、常微分方程、多元函数微分法、二重积分等内容。本教材是在高中数学基础上对微积分知识进行巩固与加深,并且结合医药行业的特点,在每一章里都有与医药学有关的例题,并且引进现代化教学技术,在每一章的后面都安排了数学实验,介绍Mathematica软件,为解决实际问题带来方便。 本书供药学以及相关专业高职层次教学使用,也可以作为医药行业培训和自学用书。
本书是普通高等教育“十三五”规划教材、全国高等医药院校规划教材《医药高等数学》(第5版)的配套教材,也是本书的第4版。全书分10章,包括一元函数微积分、空间解析几何、多元函数微积分、微分方程与无穷级数等。《医药高等数学》侧重于理论,本书侧重于理论知识的归纳总结、各类各层次习题的分析与解法,它有利于学生对高等数学的概念与理论的理解,有利于培养学生归纳总结、分析解决问题的能力,有利于学生对运算和方法的掌握,也有利于沟通教与学两个教学环节。
本书是根据普通高等理工科院校高等数学课程的基本要求,结合研究生入学考试的需求,汲取国内外优秀教材的优点编写而成.全书分上、下两册.下册内容包括空间解析几何与向量代数,多元函数微分法及其应用,重积分,曲线积分与曲面积分,无穷级数.本书力求结构严谨、逻辑清晰、叙述简练,并从较典型的实际问题着手,引入概念和突出应用.内容与中学数学相衔接,由浅入深,循序渐进,便于教学与自学.书中各章节的主要内容都配有适量的例题和习题,着重训练读者对定义与概念的理解和对定理与方法的应用能力,培养读者解决问题的逻辑思维方法和创新能力.而每章都配有适量的总习题,便于读者掌握重要的基本概念与数学思想,有利于巩固重点内容.