《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。*后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
本书是为高等职业院校编写的线性代数课程教材,是根据*颁发的关于高等职业教育线性代数课程的基本要求而编写的。本书共5章,详细讲述了线性代数的基本内容及其应用,包括行列式的定义及其运算、矩阵及其运算、线性方程组的有关知识、相似矩阵与二次型,以及数学实验等。本书的特点是每章通过例题介绍解题思路,并对解题方法、步骤进行了详细归纳。每章都安排小结与练习,使读者巩固所学知识,并提高分析、解决问题的能力。在每章的习题与练习题中都配有相应的二维码,读者可以使用移动设备扫码浏览参考答案与提示。本书适合高等职业院校计算机类、电子信息类等相关工程类专业的学生使用,也可供应用型本科及其他类型院校的学生选用参考。
《线性代数与线性规划》是*“高等理工教育数学基础课程教学改革与实践立项课题(2007—143)”之“新世纪农林院校大学数学教学规范(教学基本要求)的研究与实践”项目的研究成果,《线性代数与线性规划》根据新的教学基本要求,结合作者多年教学经验并按照继承、发展与改革的精神编写而成,是集体智慧的结晶。《线性代数与线性规划》内容共分八章,包括:行列式;矩阵及其应用;线性空间与线性变换;线性方程组;相似矩阵与二次型的化简;线性规划问题;线性规划问题的进一步讨论;线性代数应用举例等。与现行同类教材相比,《线性代数与线性规划》的特点是:突出矩阵方法;侧重线性代数的应用,并从实际例子出发,引出线性代数的一些基本概念、基本理论和方法;注重与中学知识的衔接,许多知识用附录呈现,使其自成体系,结果严谨;例题丰富
本书内容包括行列式、矩阵、n维向量与线性方程组、线性空间、矩阵的对角化、实二次型和线'性变换等线'性代数的基本知识以及基本线性代数问题的计算机实现,通过将线性代数的基本知识与计算机相结合使学生能利用数学软件解决一些简单的线性代数的实际问题。书末还给出了有关的Matlab软件的使用说明。
该书稿是《线性代数(经管类?第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
《线性代数》详尽地介绍了线性代数的基本理论和方法,以线性方程组为主线,以矩阵为主要研究对象,同时利用MATLAB软件解决了线性代数中的相关问题。 《线性代数》主要内容包括:行列式、矩阵及其运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、MATLAB软件的应用,其中线性空间与线性变换可作为选学内容。本教材每章配有习题,并附有习题答案。 《线性代数》可作为高等院校非数学类专业线性代数的教科书或参考书,也可以作为教师的教学参考书。
C# 6和VisualStudio 2015编程实战指南 《C#入门经典》系列是屡获殊荣的C#名著和超级书。版的 C#入门经典(第7版) C# 6.0 & Visual Studio2015 全面介绍使用C# 6和.NET Framework编写程序的基础知识,是编程新手的理想读物。这本分步讲解的实用教程从最基本的面向对象编程讲起,浓墨重彩地描述初学者最常用的工具,不要求读者具有任何编程经验。紧贴实用的示例使用Visual Studio 2015中的C#环境,涵盖微软为使C#更好兼容其他编程语言所做的改进。本书呈现微软资深开发人员的专家级建议,将指导初学者立即上手编写Windows和Web应用程序。 主要内容 首先讲解编程基础知识,如变量、流控制、面向对象编程、类、函数、集合、比较和转换等 重点介绍Visual Studio 2015中初学者喜欢的C#6开发环境,囊括所有功能和语言改进 包括云和Windows编程中级内容,涵盖数据库和XML 揭密错误处理技术和调
本书根据高等院校理工类本科专业线性代数课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应即时实现实验操作。本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型等知识。 本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本书根据高等院校普通本科理工类专业线性代数课程的近期新教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。本书引入了大量的数学实验,可以通过扫描对应即时实现实验操作。本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型等知识。 本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。