本书系统地汇集了数学分析各个部分的一些典型例题,并对这些例题的解(证)题方法、思路进行了深入的分析和总结,使读者能从例题分析中提高自己对课程内容的理解、分析和解决问题的能力.每章都附有一定数量的习题,供读者学习时进行练习.
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:*章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
《数学分析教本.上册》作为数学分析课程的教材,共分上、中、下三册出版. 上册主要介绍数列的极限、函数的极限与连续、导数与微分、微分中值定理与泰勒公式、一元函数微分学应用及实数基本理论等内容. 《数学分析教本.上册》注重概念引入的自然性与理论推证的严密性. 注意内容的完整、安排的恰当;表述清楚、简明;习题配备合理.
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
《6.n.吉米多维奇数学分析习题集题解(2)(第4版)》4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路;帮助读者逐步解决学习中的困难,为他们在学习过程中提供一个良师益友。这是本次修订的主要工作。