本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
本书是一本调和分析的入门书。全书分为三部分,首先,给出了直线R上的Fourier分析理论,包括Fourier级数和Fourier变换;接着,将1R上的Fourier分析思想推广到局部紧Abel群(LCA群)上;最后,介绍了非交换群上调和分析技巧,特另抛,以Heisenberg群为例描述了非紧非交换群上的Fourier分析理论。每章后都配备了一定数量的习题,可作为本书内容的补充或延伸。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。全书分三册,本册内容包括多元函数及其微分学、多元函数微分法的应用、含参变量积分、重积分、曲线积分和曲面积分及各种积分之间的关系。书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学。每章末都有小结,对该章的主要内容作了归纳和总结,并配有复习题,方便学生系统复习。书中还配有一些概念、定理和方法的视频讲解,内容呈现方式更加生动直观。
本书内容主要涉及Fourier分析的经典理论,如算子插值定理及应用、BMO空间、Fourier变换,以及非线性泛函分析初步.第1章主要介绍Lp情形下的Riesz插值定理,Marcinkiewicz插值定理以及这些算子插值定理在Hardy-Littlewood极大算子理论、极大平均振动算子理论中的应用,并由此给出了BMO空间的概念和BMO空间一些基本性质与刻画.第2章系统地讲述了Fourier变换的L1理论、Fourier变换的反演以及Fourier变换的L2理论.第3章引入了两类基本测试函数空间,并由此定义了两类广义函数及其导数与Fourier变换.第4章简单介绍了非线性算子的一些基本概念与性质,如非线性算子连续性与有界性、全连续算子、非线性算子的微分和隐函数定理.
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书讲述数学分析的基本概念、原理与方法,分为上、下两册.上册内容包括函数、数列极限、函数极限、函数的连续性、导数与微分、微分中值定理及其应用、不定积分、定积分、定积分的应用、广义积分等.下册内容包括数项级数、函数项级数、幂级数与Fourier级数、多元函数的极限与连续性、多元函数微分学、隐函数定理及其应用、含参量积分、重积分、曲线积分、曲面积分等.本书每节配有适量习题,每章还配有总习题,分为A与B两组.书末有习题答案与提示,其中难度大的证明题有较详细的提示,以方便读者在自主学习时查看.
本教材分上、下两册,本书为下册.内容包括数项级数、函数项级数与函数列、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数、含参变量的积分、重积分、曲线积分、曲面积分.本书在章节安排上,由浅入深,逐步展开,编排合理;注重对基础知识的讲述与基本能力的训练;结合微积分的发展史与几何意义引进相关的概念与定理,具有启发性;注重新概念、新定理以及精彩定理证明的评注;证明详细,难点处理透彻,例题丰富,便于教学和读者自学.
本书共有六章 , 分别为 : 线性半序空间 (K 空间 ),K 空间的分解与并合 ,K 空间元素的积分表示 ,K 空间的扩展 , 正则 K 空间 , 具有度量函数的 K 空间及赋范 K 空间 。 书中配有相关练习题以供读者学习理解 。
《数学分析教程(下册)》是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
《发展方程边界元法及其应用》以抛物型方程、双曲型方程、Maxwell方程等初边值问题为例,介绍了求解发展型偏微分方程的边界元方法(经典边界方法、自然边界元法)及有限元与边界元耦合法,总结了作者近些年来在此研究领域的研究成果,其中包括初边值问题的边界积分归化与自然边界归化方法、离散化求解边界积分方程的数值方法、边界元近似解的收敛性和误差分析方法,以及边界元法的一些应用。
《数值分析(第3版)》着重介绍适合于电子计算机上采用的数值计算方法及其理论,内容包括误差分析、非线性方程求根、线性代数方程组数值解法、多项式插值与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程数值解法等。 《数值分析(第3版)》内容覆盖了*工科研究生数学课程教学指导小组所制订的工科硕士生数值分析课程教学基本要求,同时还增加了一些工科专业所需要的内容,如机器数系、有理函数插值、振荡函数积分等。书中对各种计算方法的构造思想都作了较详细的阐述,对稳定性、收敛性、误差估计以及算法的优缺点等也作了适当的讨论。 《数值分析(第3版)》还挑选了部分东南大学工科研究生结合各自专业自选课题的计算实习,以此作为《数值分析(第3版)》各章的应用实例。 《数值分析(第3版)》可作
本书为工科数学分析教材。适合工科数学要求较高的学生使用。哈尔滨工业大学数学系根据数学教学改革成果而编写的系列教材之一。全书分上、下两册。与传统的"高等数学"相比,本书加强了基础理论的阐述,在内容上更加注重对学生抽象思维和逻辑上严谨论证的训练,对于培养学生独立思考与创新意识的提高也有相应的要求。本书适合做本、硕连读生和对数学有较高要求的非数学专业本科生的教材,本书也可作为准备考研人员和工程技术人员的参考书;若略去部分理论较强的内容,也可作为一般工科专业的微积分教材。 本书特色:
本书是为了配合高等教育出版社出版,华东师范大学数学系编写的《数学分析》(第四版 下册)一书而编写的配套辅导书。本书共有12章,分别介绍数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数 微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数微分学等内容。本书按教材内容安排全书结构,各章基本都包括本章导航、各个击破、课后习题全解、走进考研四部分内容。全书按教材内容,对各章的重点、难点做了较深刻的分析,针对各章节习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题。各章还附有典型例题与解题技巧,以及历年考研真题评析。
奇异摄动问题的边界层和内层理论主要介绍常微分方程、泛函微分方程和偏微分方程的初值、边值问题的解所出现的初始层、边界层和内层现象.利用伸长变量、匹配原理、多重尺度、合成展开等方法构造问题的形式渐近解,以及引用极值原理、能量积分、先验估计、上下解理论和不动点原理等理论证明了相关渐近解的一致有效性.
本书是* 国家理科基地创建名牌课程项目 的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。 本书以编著者们多年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取上致力于对传统内容的更新、补充与层次化。本次修订对第1版的基本框架(指章、节和小节)和主要内容(指命题、例题、练习题和参考题)基本上不做改动,但对书中一些证明、解法和注释等做了多处改进;增加了练习题和参考题的层次性;对部分较难的参考题的提示进行了改进。 本书分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 本书可作为高等院