本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
本书是随机分析方面的名著之一。以主题广泛丰富,论述简洁易懂而又不失严密著称。书中阐述了各领域的典型应用,包括数理金融、生物学、工程学中的模型。还提供了很多示例和习题,并附有解答。读者对象:数学分析及金融数学专业的高年级本科生,研究生和研究人员。
本书在一般测度论观点下的概率论和随机过程初步知识的基础上,介绍了随机分析学的基础及较新成果,全书分五章:章是预备知识,包括随机过程一般理论和鞅论初步;第二章是近代随机积分理论;第三章讨论连续半鞅的随机微分、伊藤公式及其应用;第四章介绍随机微分方程的现代理论;第五章是Malliavin随机分析。
本书是一部数学经典教材,初版于1965年,以作者在东京大学任教十余年所用的讲义为基础写成的。经过几次修订和增补,1980年出了第5版,本版(第6版)实际上是第5版的重印版。全书论述了泛函空间的线性算子理论及其在现代分析和经典分析各领域中的许多应用。目次:预备知识;半范数;Baire-Hausdorff定理的应用;正交射影和riesz表示定理;Hahn-Banach定理;强收敛和弱收敛;傅里叶变换和微分方程;对偶算子;预解和谱;半群的解析理论;紧致算子;赋范环和谱表示;线性空间中的其他表示定理;遍历性理论和扩散理论;发展方程的积分。 读者对象:数学专业的研究生和科研人员。
本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi*终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。
《工科数学分析教程(上册)}是一本信息化研究型教材本书包括数列极限、函数极限与连续、导数的计算与应用、泰勒公式、不定积分、定积分的应用、广义积分、数项级数.本书体系内容由浅入深,符舍学生认知规律.每章都有提高课,内容包括混沌现象与极限、连续函数不动点定理以及应用、极值问题与数学建模、泰勒公式与科学计算、积分算子的磨光性质以及应用等系列内容,初步为学生打开现代数学的窗口.同时每章都设置了系列探索类问题,包括理论问题、应用问题,培养学生应用数学解决实际问题的能力.本教材有与之配套的MOOC 课程,充分利用多媒体信息技术,将复杂数学问题直观化,图文并茂视频课为读者营造一对一的视频授课环境,通过扫描教材中的二维码进入视频课的学习,使得学生对数学问题的理解更通透.
本书汇集了泛函分析教学过程中学生提出的大量问题 , 收集了很多主要概念和定理的反例, 主要是关于度量空间、赋范空间、 Hilbert空间和算子等问题和反例.
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
本书主要研究了非线性协整理论的非参数检验与估计两个领域,包括非线性存在性、混沌与分形特征、非线性非平稳检验及非线性协整检验与估计等;梳理了这两个领域的研究脉络和框架。对我国货币各变量序列,以及我国与国际股市指数序列应用所给出的非线性协整理论的非参数方法进行了非线性存在性检验、混沌与分形特征检验、存在非线性的非平稳检验以及非线性协整检验与估计,得出了较此前学者们应用线性协整理论相关方法更一般的结论。本书不仅可以丰富和完善协整关系模型的理论和方法,而且有助于决策者更准确地把握经济和金融变量之间的相互作用和演化关系,更好地制定经济和金融政策进行宏观调控。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
本书是《圆锥曲线习题集》的下册第1卷,内收有关椭圆的命题500道,抛物线的命题200道,双曲线的命题200边,综合命题100道,另有圆和直线的命题300道,全书合计1 300道,绝大部分是首次发表. 1 300道命题都是证明题,全部附图.全书分成5章45节,有些命题可供专题研究. 本书可作为大专院校师生和中学数学教师的参考用书,也可作为数学爱好者的补充读物.
本书较为系统地总结了Finsler流形之间的调和映射、Finsler极小子流形及Finsler-Laplace算子*特征值等有关方面的基本理论和**成果。为了自成体系,同时也为了方便读者查阅,本书在第1章先概要介绍Finsler几何的基础知识、常用的公式和方法。此外,本书还弥补和修正了相关论文中的一些错漏之处,改进和完善了部分结果。《BR》 全书共分8章,第1章主要介绍Finsler流形的基础知识。第2章和第3章丰要介绍Finsler调和映射(包括调和映射和复Finsler调和映射)的相关概念、公式、性质和应用。第4章和第5章主要介绍Finsler流形上的各种Laplace算子及其特征值估计。第6~8章主要介绍Finsler流形的HT-极小子流形和BH-极小子流形的性质及其分类。
本书主要内容包括数据的描述性统计分析、非参数假设检验、方差分析、回归分析、主成分分析、因子分析、聚类分析、判别分析、时间序列分析等.书后附有SPSS基础.在介绍数据分析的基本理论与方法的同时,本书密切结合SPSS统计软件,系统、详细地介绍数据分析方法的具体操作过程及结果分析.
本书是在作者十余年讲授数学分析、考研辅导、数学竞赛材料的基础上多次修订而成的.所选题目大部分是重点高校硕士研究生入学考试题目和重点高校教材中的经典题目,部分题目是全国大学生数学竞赛试题.本书采用分类讲解的方式,在讲解题目时一般采用分析 解答 备注的方式,使读者举一反三,触类旁通,有些题目给出多种解答方法以拓宽读者的思维.本书内容包括极限论、函数的连续性、一元函数微分学、一元函数积分学、级数论、多元函数微分学、含参变量积分、多元函数积分学.
本书主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌入定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在**性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间HS(N)和HS(Ω)及其性质。介绍近年来国内外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在**性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工具,进入
无
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calder n-Zygmund奇异积分算子的旋转方法。为体现调和分析与偏微分方程研究的紧密联系,还详细介绍了线性常系数偏微分方程的局部可解性与正则性、数学物理中的基本算子的基本解、非线性Schr dinger方程的散射理论、导数 Schr dinger方程的低正则性等应用。 本书是作者多年来培养研究生的内部讲义,特点是简洁而直奔主题,适合作为研究生的分析教材或年轻数学科研人员自学用书。