本书针对多指标函数型数据表的结构形式,确定其预处理方法并将方法程序化;研究具有“时空”特征的动态综合评价的相关理论及其函数化的转换过程;综合评价的指标数据为多指标函数型数据时,研究指标权数的赋权方法;多指标函数型数据综合评价的集成方法研究及综合评价结果(评价函数)的分析。
本书讨论大规模连续空间的强化学习理论及方法,重点介绍使用函数逼近的强化学习和动态规划方法。该研究已成为近年来计算机科学与技术领域中活跃的研究分支之一。全书共分6章。章为概述;第2章为动态规划与强化学习介绍;第3章为大规模连续空间中的动态规划与强化学习;第4章为基于模糊表示的近似值迭代;第5章为用于在线学习和连续动作控制的近似策略迭代;第6章为基于交叉熵基函数优化的近似策略搜索。本书可以作为理工科高等院校计算机专业和自动控制专业研究生的教材,也可以作为相关领域科技工作者和工程技术人员的参考书。
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS 以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
《非局部反应扩散方程》以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、单调迭代方法、常数变易法、上下解方法、多尺度分析、Turing分支理论、数值模拟等。《非局部反应扩散方程》所介绍的内容简明扼要,深入浅出,并尽量反映该内容的思想本质,从多个角度阐述了非局部反应扩散方程的核心内容。《非局部反应扩散方程》彩图可扫封底查看。
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
本书讨论大规模连续空间的强化学习理论及方法,重点介绍使用函数逼近的强化学习和动态规划方法。该研究已成为近年来计算机科学与技术领域中活跃的研究分支之一。全书共分6章。章为概述;第2章为动态规划与强化学习介绍;第3章为大规模连续空间中的动态规划与强化学习;第4章为基于模糊表示的近似值迭代;第5章为用于在线学习和连续动作控制的近似策略迭代;第6章为基于交叉熵基函数优化的近似策略搜索。本书可以作为理工科高等院校计算机专业和自动控制专业研究生的教材,也可以作为相关领域科技工作者和工程技术人员的参考书。