《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例.%26nbsp;本书从无约束优化问题入手,通过直观分析和严格证明给出了无约
本书以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、单调迭代方法、常数变易法、上下解方法、多尺度分析、Turing分支理论、数值模拟等。本书所介绍的内容简明扼要,深入浅出,并尽量反映该内容的思想本质,从多个角度阐述了非局部反应扩散方程的核心内容。书中彩图可扫封底二维码查看。
本书全面介绍了求解非线性规划问题的无罚函数方法。从基础概念出发,逐步讲解罚函数方法、传统与修正滤子方法、非单调滤子方法、自适应滤子方法以及其他无罚函数方法等。书中不仅提供了理论分析,还结合了丰富的数值实验,以证明算法的收敛性和有效性。本书融合了深人的理论探讨和实际案例,为研究生提供了坚实的理论基础和实践操作指南。书中对算法的收敛性进行了详尽的分析,并介绍了多种最优化问题的求解技巧,旨在帮助读者深人掌握最优化领域的知识。
函数空间的拓扑结构是一本深入研究无限维函数空间拓扑结构的全新专著。它系统性地总结了过去二十年来(包括作者和其他学者)的相关研究成果,尤其着重于一些具有实际背景的函数空间及其对偶空间的拓扑结构。这本书在
本书是一部全面介绍单变量和张量积样条函数理论的经典著作,为便于读者理解,书中呈现了样条理论在诸多领域的应用,其中包括近似理论,计算机辅助几何设计,曲线和曲面设计与拟合,图像处理,微分方程的数值解,强调了该理论在商业和生物科学中的应用也日益广泛。本书主要面向应用分析、数值分析、计算科学和工程领域的研究生和科学工作者,也可作为样条理论、近似理论和数值分析等应用数学专业课教材或教学参考书。
泛函分析是现代数学的一个重要分支,它不但具有高度的抽象性,而且具有高度的统一性和广泛的应用性。本书试图将抽象的泛函分析与一些具体的物理问题联系起来,内容涉及经典变分中的几个 例子,线性泛函分析中一些基本定理,广义函数和Sobolev空间,泛函极值的一阶和二阶必要条件及充分条件,Ekeland变分原理及其推广和应用,Pontryagin**值原理及其应用,共轭凸函数理论及其应用,极小极大原理尤其是山路引理及其应用,具有Newton势的N(≥2)体问题的周期解,以及几个经典的不动点定理。
《特殊函数概论》是学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
泛函分析是现代数学的一个重要分支,它不但具有高度的抽象性,而且具有高度的统一性和广泛的应用性。本书试图将抽象的泛函分析与一些具体的物理问题联系起来,内容涉及经典变分中的几个 例子,线性泛函分析中一些基本定理,广义函数和Sobolev空间,泛函极值的一阶和二阶必要条件及充分条件,Ekeland变分原理及其推广和应用,Pontryagin**值原理及其应用,共轭凸函数理论及其应用,极小极大原理尤其是山路引理及其应用,具有Newton势的N(≥2)体问题的周期解,以及几个经典的不动点定理。
本书利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式**常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的**理论成果,为探讨有界积分算子和离散算子的构建及算子范数的计算提供了方法。《BR》本书上册主要探讨低维的Hilbert型不等式及应用,由于针对各式各样的核陈述了大量的Hilbert型不等式,因此读者可以从本书中方便地查到目前散见于各文献中的结果。下册以讨论高维Hilbert型不等式为主,把低维结果推广到高维情形。
《凸分析讲义——共轭函数及其相关函数》重点介绍了回收锥、凸函数的连续性、凸集的分离定理、凸函数的共轭函数及支撑函数、凸集的极及其相关内容。这一部分是分析约束优化问题理论性质尤其是对偶理论的基础工具。为了增强可读性,《凸分析讲义——共轭函数及其相关函数》将抽象的概念尝 简单的例子和直观的图像来表达,以期读者对《凸分析讲义——共轭函数及其相关函数》内容有 形象深刻的理解和把握。同时,将知识点与 化方法部分前沿研究内容进行有机结合,试图让读者看到这些基础理论和概念在前沿科学研究课题中的有机应用。
本书共有七章分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的二些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题。