《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书是一本常微分方程本科生教材,传统意义的微分方程是讲解求解微分方程解析解的特殊技巧,本书的特别之处在于首先将数学建模贯穿全书,然后以不同的方法进行解的表达,在解的裹达中,不仅仅限于解析解,主要以定性为主,通过斜率场、解的图像、相平面上的向量场及轨线等工具,到达对解的渐近行为的最好理解,最后以数值方法与计算机模拟为工具加深对解的行为的直觉理解.全书的图形演示课件可焱陆本书指明的课程网站下载.全书分5章,主要包括一阶微分方程、一阶二维微分方程组、二阶线性常系数徵分方程、一阶二维非线性方程组和一阶n维线性微分方程组.
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
完全非线性椭圆方程(影印版)
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
本书基本上是自洽的。*部分介绍了20多年来无穷维线性系统控制理论的**发展,特别是适定、正则系统的抽象理论,也讨论了可控性、可观性、能稳性、可检性、可优性、可估性、实现,以及极点配置等几个主要的基础性概念。第二部分介绍了适定、正则系统理论在偏微分方程,主要是在几个经典的高维偏微分方程中的应用。第l章和附录中列出了列出本书所需的有穷维系统控制、泛函分析、黎曼几何的基水知识,有利于初学者入门。
本书共有七章,分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的一些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题。 本书适合大学师生及数学爱好者参考使用。
泛函分析是大学数学专业一门重要的专业课,其高度的概括性与抽象性也使其成为数学专业较难学习的课程之一。本书试图以漫谈的方式将泛函分析的基础内容娓娓道来,尽可能将这一抽象的课程通俗清楚地表达出来,方便学生对这门课程的深入了解。本书有两大特色,一是按照空间上的映射与空间的结构相适应的思想对教学内容进行编排,并体现在每章的标题上,使泛函分析中的空间与算子两大内容有机结合;二是将泛函分析史的知识以补充阅读的形式纳入全书,希望这也是对现行数学史教学改革的一个有益尝试。本书是在编者近10年的实践教学基础上编写而成。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
《同济博士论丛 多复变亚纯函数及亚纯映射的*性定理》以多复变数的亚纯函数与亚纯映射的*性问题为研究对象。首次尝试讨论了涉及超曲面的亚纯映射*性问题,得到一个*性定理。
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换。每章内容包括:1.基本要求与内容提要,简要介绍每一章的基本要求和内容;2.典型例题与解题方法,对应掌握的重点以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析;3.教材习题同步解析,详细解答主教材的全部习题;4.自测题,精选了相当数量的有代表性的习题,供读者自测。本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数和积分变换的参考书。