本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
当今科学家收集曲线样本及其他函数观测值,这本专著论述这类数据分析的思想和技巧,主要内容包括经典的线性回归方法、主成分分析、线性建模、典型相关分析及特殊的泛函技巧,如曲线注册和主微分分析。 本书始终利用来源于实际应用的数据,介绍方法的动机并举例论证,特别通过讨论数据生成过程的光滑性,说明如何通过泛函方法来发现数据的新特点;这些数据主要来源于增长分析、气象学、生物力学、马类科学、经济学及医学等领域的应用。本书论述新颖的统计技术,同时使其中的数学论证能被大多数人所理解。 本书许多内容都基于作者自己的工作,某些内容是首次出版。本书适合学生、应用数据分析学者及科研人员阅读,对统计学及其他广阔领域的研究也颇有价值。 本书作者Jim Ramsay是McGill大学的心理学教授,加拿大统计学会主席,多元分析等诸多
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
无
本书根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.书中的习题都有解答或者提示,方便学生学习.本书一个重要特点是结合测度论的发展历史,对相关的数学家及其工作也作了简短介绍.
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭代法简介等。
本书系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》 本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性代数方程组、**化等模型,着重建模、计算与应用三方面;然后分别给出了大数据领域、图像处理与压缩感知领域中的建模与计算案例,供读者学习、研究参考。本书是新时代数学深度应用、新工科迅猛发展形势下的一本应用与计算数学书,具有交叉性、集成性、应用性特征,以激发读者活学数学、活用数学的思考与热情。
本书深入浅出地引入多项式理想的Grobner基理论,给出Grobner基(特别是Grobner基的消元原理)在多元多项式方程(组)的求解、多项式理想结构性质、仿射代数结构性质、代数几何、域的代数扩张、整数优化以及图论等方面的一些基本应用,着力于引导读者认识多项式理想的Grobner基理论在代数结构+序结构+算法这个交叉领域平台上得以成功发展和有效应用的数学原理。
《复变函数与积分变换同步学习辅导(第二版)》是《复变函数与积分变换(第三版)》(哈尔滨工业大学数学教学丛书,科学出版社,2014)—书的教学辅导与学习参考书,可与《复变函数与积分变换同步学习辅导(第二版)》配套使用。 《复变函数与积分变换同步学习辅导(第二版)》共分8章。每章包括内容提要、典型例题剖析、测试题及其解答等四部分,而且每章的后一部分都对《复变函数与积分变换(第三版)》一书相应章节的习题作出了详细的解答。
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS 以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧 首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
《实变函数(第三版)》是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在**版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。《实变函数(第三版)》内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书包括六章内容,第1章介绍距离空间的基本概念,并介绍了压缩映射原理及其对于微分方程理论的应用。第2章介绍线性赋范空间的基本概念以及线性赋范空间上的线性算子。第3章介绍内积空间的概念。第四章介绍线性算子和线性泛函的基本理论,包括Baire纲推理的方法,开映射定理,逆算子定理,闭图像定理,一致有界原理(共鸣定理),以及Hahn-Banach的连续线性泛函保范延拓定理。第五章讲述共轭空间和伴随算子,详细介绍了一致连续函数空间的共轭空间,P次可积函数空间的共轭空间。。第六章讲述紧算子,全连续算子的概念。每节后均配有习题。书后附有名词索引。本书可供综合大学和高等师范院校数学专业做为教材或教学参考书
《复变函数与积分变换(第三版)》是国家工科数学教学基地之一的哈尔滨工业大学数学系根据*数学基础课程教学指导分委员会**修订的《工科类本科数学基础课程教学基本要求(修订稿)》的精神和原则,结合多年的教学实践和研究而编写的系列教材之一。《复变函数与积分变换(第三版)》共8章,包括复数与复变函数、解析函数、复变函数的积分、级数、留数、保形映射、傅里叶变换、拉普拉斯变换等内容。每章后进行了简明的总结,便于学生深入掌握该章知识,并且精心设计了相应梯度的、适量的习题,在书后附有参考答案。书末附有傅民变换和拉民变换简表,便于读者查阅使用。《复变函数与积分变换(第三版)》标有*号部分供读者选学使用。
本书主要探讨能产生**功率的理想风力机的结构和性能,并以此为基础研究实际风力机叶片函数化设计方法。首先,提出理想风力机的概念,建立理想叶片的数学模型,并推导其功率#转矩、升力和推力性能表达式;其次,考虑结构强度和加工工艺等实际环境的特殊要求,对理想叶片进行实用化改造,以建立实际叶片的函数表达式,并用解析法计算其性能,提出实际叶片函数化设计方法,实现通过生成叶片函数图像的方式设计叶片模型。本书建立一个关于叶片函数化设计的独立完整的技术体系的基础框架,以解析法作为主要研究方法,以理想叶片的结构和性能作为理论基础,以实际叶片的设计和性能计算作为重点研究内容。
这本书是索伯列夫院士的名著。他是一个用广义函数与广义导数的概念,并利用泛函分析的方法,解决了许多数理方程中的问题的学者。此书共分三章:泛函分析中的特殊问题、数学物理中的变分方法、双曲型偏微分方程理论。书中对每一个概念都有所交代,所以读者只要具备实变函数、重积分、偏微分方程及变分法方面的基础知识,即可读懂本书而无困难。
本书以实数和复数的理论知识为基础,系统地介绍了初等函数、微分法、积分法幂级数,以及奇点等重要理论,包括函数的连续性、可微性、可积性及其定理性质,突出了函数论在数学中的重要地位,内容丰富,叙述详尽。
《复变函数与积分变换》是复变函数与积分变换课程教材,介绍复变函数与积分变换的基本概念、理论和方法. 主要内容包括:复数与复变函数、解析函数、复变函数的积分、级数、留数、Fourier 变换、Laplace 变换、Matlab 在复变函数与积分变换中的应用等. 每章给出本章小结,颇具特色. 各章后配有适量习题,书末附习题参考答案,便于读者复习和总结. 《复变函数与积分变换》突出应用性,力求讲解细致、通俗易懂,加强数学软件在课程教学中的作用.