《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书是一本常微分方程本科生教材,传统意义的微分方程是讲解求解微分方程解析解的特殊技巧,本书的特别之处在于首先将数学建模贯穿全书,然后以不同的方法进行解的表达,在解的裹达中,不仅仅限于解析解,主要以定性为主,通过斜率场、解的图像、相平面上的向量场及轨线等工具,到达对解的渐近行为的最好理解,最后以数值方法与计算机模拟为工具加深对解的行为的直觉理解.全书的图形演示课件可焱陆本书指明的课程网站下载.全书分5章,主要包括一阶微分方程、一阶二维微分方程组、二阶线性常系数徵分方程、一阶二维非线性方程组和一阶n维线性微分方程组.
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
《同济博士论丛 多复变亚纯函数及亚纯映射的*性定理》以多复变数的亚纯函数与亚纯映射的*性问题为研究对象。首次尝试讨论了涉及超曲面的亚纯映射*性问题,得到一个*性定理。
《实变函数(第三版)》是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在**版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。《实变函数(第三版)》内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
泛函分析是大学数学专业一门重要的专业课,其高度的概括性与抽象性也使其成为数学专业较难学习的课程之一。本书试图以漫谈的方式将泛函分析的基础内容娓娓道来,尽可能将这一抽象的课程通俗清楚地表达出来,方便学生对这门课程的深入了解。本书有两大特色,一是按照空间上的映射与空间的结构相适应的思想对教学内容进行编排,并体现在每章的标题上,使泛函分析中的空间与算子两大内容有机结合;二是将泛函分析史的知识以补充阅读的形式纳入全书,希望这也是对现行数学史教学改革的一个有益尝试。本书是在编者近10年的实践教学基础上编写而成。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
《工程数学:积分变换(第六版)》介绍Fourier变换和IAplace变换这两类积分变换的基本内容及其某些应用,初版于1978年,再版于1982年,三版于1989年,四版于2003年,五版于2012年。本次修订在基本保持第五版的系统和结构的基础上,增添了一些内容,特别是 积分变换的MATLAB运算 (第三章),并加强了该书的实用性和灵活性,以适应不同专业和不同层次的要求,书中的例题与习题也作了适量的补充与调整。书后附有Fourier变换简表和Laplace变换简表,可供读者学习时查用。书中给出的习题答案可供参考。 《工程数学:积分变换(第六版)》可供高等学校非数学类专业本科生选作教材,也可作为工科研究生的教材或教学参考书,亦可供广大工程技术人员和科研工作者参考。
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换。每章内容包括:1.基本要求与内容提要,简要介绍每一章的基本要求和内容;2.典型例题与解题方法,对应掌握的重点以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析;3.教材习题同步解析,详细解答主教材的全部习题;4.自测题,精选了相当数量的有代表性的习题,供读者自测。本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数和积分变换的参考书。
《复变函数论》系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
《复变函数与积分变换》是复变函数与积分变换课程教材,介绍复变函数与积分变换的基本概念、理论和方法. 主要内容包括:复数与复变函数、解析函数、复变函数的积分、级数、留数、Fourier 变换、Laplace 变换、Matlab 在复变函数与积分变换中的应用等. 每章给出本章小结,颇具特色. 各章后配有适量习题,书末附习题参考答案,便于读者复习和总结. 《复变函数与积分变换》突出应用性,力求讲解细致、通俗易懂,加强数学软件在课程教学中的作用.
本书根据*“复变函数与积分变换”非数学类课程的教学基本要求编写而成,主要内容有:复数与复变函数、解析函数、复变函数的积分、级数、留数、共形映射、Fourier变换和Laplace变换。本书从应用型本科学生的实际出发,对基本概念的引人尽量采用启发式的方法,力求理论高度不降低、推导过程简单明了、重点突出、难点分散。书中每节后配有精选的习题,每章后配有总习题,书末附部分习题参考答案。
本书包括六章内容,第1章介绍距离空间的基本概念,并介绍了压缩映射原理及其对于微分方程理论的应用。第2章介绍线性赋范空间的基本概念以及线性赋范空间上的线性算子。第3章介绍内积空间的概念。第四章介绍线性算子和线性泛函的基本理论,包括Baire纲推理的方法,开映射定理,逆算子定理,闭图像定理,一致有界原理(共鸣定理),以及Hahn-Banach的连续线性泛函保范延拓定理。第五章讲述共轭空间和伴随算子,详细介绍了一致连续函数空间的共轭空间,P次可积函数空间的共轭空间。。第六章讲述紧算子,全连续算子的概念。每节后均配有习题。书后附有名词索引。本书可供综合大学和高等师范院校数学专业做为教材或教学参考书
《偏微分方程数值解法(第二版)》内容包括常微分方程两点边值问题的差分解法、椭圆型方程的差分解法、抛物型方程的差分解法、双曲型方程的差分解法和有限元方法简介。力求做到:(1)精选内容。重点介绍有限差分方法。(2)难点分散。对于差分方法,先从常微分方程两点边值问题出发,介绍差分方法的有关概念以及常用的分析技巧,然后将这些概念和技巧分别应用于椭圆型方程、抛物型方程和双曲型方程的数值求解。对于有限元方法,也先从常微分方程两点边值问题出发,介绍有限元方法的基本思想,再研究椭圆型方程的有限元解法。(3)强调会“用”各种数值方法。先举例示范,再要求学生模仿,*后到熟练掌握。书末的两个附录分别介绍有限Fourier级数法和Schrodinger方程的差分方法。
本书介绍了复变函数的一些基础知识,主要包括复数与复变函数、解析函数与保形变换、复积分、级数、残数与辐角原理、解析开拓、正规族与Riemann映射定理、调和函数。