本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
无
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考.
在科技计算中,多元函数逼近理论已得到广泛的应用,其理论和研究的发展遇着重要的实际意义。本书主要叙述多元函数逼近理论的发展,内容包括:线性算子的逼近原理、多元差值、多元QeobwB逼近、多元样条逼近、多元非线性逼近,其中包括了作者的许多科研成果。
内容简介:本书共分五章,详细地介绍了三角函数与迭代函数的相关概念、研究方法,并介绍了三角函数及复数,多项式与因式分解,迭代函数与函数方程的一些函数趣题的一题多解,供读者参考。 本书可作为大、中学生及初等数学爱好者学习初等函数时的参考用书。
本书主要针对近几年刚刚发展起来的一种新型混油同步方式修正函数投影同步展开研究目全书共9章回第1章介绍了混沌修正函数投影同步基本知识.第2章构建了一个Fang超混沌系统并分析其动力学行为.第3章研究了混沌系统同阶和降阶修正函数投影同步第4章基于单向搞合混沌同步原理,设计了两种混沌函数投影同步响应系统第5章研究了同结梅和异结构混沌系统的修正函数投影同步第6章研究了输人受限的混沌系统的修正函数投影同步第7章研究了混油系统的组合函数投影同步.第8章研究了以混沌系统作为复杂网络节点的复杂动态网络的修正函数投影同步第9章将混沌修正函数同步应用于保密通信,研究了基于错位函数投影同步的混沌保密通信。
由纳汤松所*的《函数构造论(下)》利用简单 的分析工具(代数多项式与三角多项式)来讨论函数 的逼近理论,《俄罗斯数学精品译丛:函数构造论( 下)》主要介绍内插过程与机械求积的收敛性问题, 述理详明,取材丰富,特别是对苏联数学家在这方面 的巨大成就进行了较多叙述,书中几乎未用到复变函 数论方法。 《俄罗斯数学精品译丛:函数构造论(下)》可 供数学专业大学生及高等数学研究人员阅读参考。
内容简介: 本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果.全书共分8章:佩尔方程与广义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn-群. 本书可作为大专院校理工科高年级学生或研究生的教材,也可作为科技工作者的参考书.
《复变函数与积分变换》共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书共分两章.*章介绍了平稳随机函数的一般理论;第二章介绍了平稳随机函数的线性外推及滤过。内容详尽
内容简介: 《不定方程及其应用(上)》涉及数论、有限群论、组合数学、图论等多学科,以不定方程作为一条主线,并将不定方程的结果与方法应用于代数数论、有限单群、组合数学等数学领域中一些重要问题的研究。本套书选择了近几十年来国内外数学竞赛中的经典试题,进行了分析讲解,供数学爱好者参考,该书是其中的上册,由南秀全、杜雯编著。全书共分六章,内容包括二元一次不定方程及其解法、多元一次不定方程、多元一次不定方程组等。
完全非线性椭圆方程(影印版)
泛函分析的历史表明,泛函分析是代数学和拓扑学相互结合的产物,它的演变发展受到这两大数学分支的影响。显而易见,泛函分析已经涵盖了现代分析中相当大的一部分,特别是偏微分方程理论。 本书共分为九章,*章主要讨论线性微分方程和施图姆-刘维尔问题。第二章讨论了 密码积分 方程,包括狄利克雷原理和贝尔-诺依曼方法。第三章讨论薄膜振动方程,包括庞加莱的贡献和H. A. 施瓦茨1885年的论文。第四章讨论了无穷维思想。其他几章分别为:第五章介绍至关重要的几年和希尔伯特空间的定义,包括弗雷德霍姆的发现和希尔伯特的贡献;第六章讨论对偶和赋范空间的定义,包括哈恩-巴拿赫定理和滑脊方法与贝尔纲;第七章讲述1900年后的谱理论,包括F. 里斯、希尔伯特、冯 诺依曼、外尔和卡莱曼的理论和工作;第八章讨论局部凸空间和广义函数论
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设
实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................