《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
本书是美国著名数学家Peter Lax与康奈尔大学数学教授Maria Terrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积分,以及作为一元函数微积分基本定理的多元推广??格林定理、散度定理、斯托克斯定理.此外,作者在散度定理、斯托克斯定理这一章还补充了对守恒律的介绍,并专辟一章介绍了数学物理中典型的几类偏微分方程.跟Lax的其他教材风格一致,作者在本书中一如既往地贯彻了牛顿的主张“达到理解的绝佳方式是通过少量好的例子”.Lax对数学之应用造诣非凡,他成功地将来自物理的诸多例子融入这两本微积分教材,将数学与物理融会贯通.本书末尾提供了部分习题的答案.
本书讲述偏微分方程现代理论的最基础部分,内容共五章.其中前两章系统介绍函数空间、广义函数和Fourier分析理论的最基础部分,是学习偏微分方程现代理论必须具备的最基本的分析学知识,第3和第4两章系统讲述了二阶线性椭圆型方程和二阶线性抛物型、双曲型和Schr?dinger型三类发展型方程的最基础理论,这两章内容的学习能够基本满足希望专门研究椭圆型方程、抛物型方程或非线性发展方程以及相关学科领域读者的需要.最后一章简要介绍线性偏微分方程一般理论和拟微分算子理论.本书最突出的特点是把椭圆型方程和抛物型方程的Cμ理论与Lp理论都用Fourier分析理论做了统一的处理,并把这些理论都构建在L2理论之上,从而使得这些以前需要与偏微分方程的Fourier分析方法独立地学习的不同理论体系很自然地融合在一起.
本书紧密结合现实世界中的偏微分方程模型系统地介绍偏微分方程的基本理论和方法。
《微分几何与积分几何(英文版)》分为四部分:PartⅠWhatisGeometryandDifferentialGeometry;PartⅡLecturesonIntegralGeometry;PartⅢDifferentiableManifolds;PartⅣLectureNotesonDifferentiableGeometry。《微分几何与积分几何(英文版)》内容包括:WhatIsGeometry;LecturesonIntegralGeometry;MultilinearAlgebra;DifferentiableManifolds;ExteriorDifferentialForms;AffineConnections;RiemannianManifolds;ReviewofSurfaceTheory;MinimalSurfaces;PseudosphericalSurface等。
本书以五幕数学剧的形式直观地讲述微分几何和微分形式,包括“空间的实质”“度量”“曲率”“平行移动”和“微分形式”。在前四幕中,作者把“微分几何”回归为“几何”,使用200多幅手绘示意图,运用牛顿的几何方法对经典结果做出了几何解释。在第五幕中,作者介绍了微分形式,以直观的几何方式处理 主题。本书作者挑战性地重新思考了微分几何和微分形式这个重要数学领域的教学方式,只需要基本的微积分和几何学知识即可阅读本书。
本书的主要介绍了二阶微分方程边值问题中的上下解方法,共振问题和正解问题的研究,各类高阶微分方程边值问题解的存在性、多解性,带p-Laplacian算子的微分方程边值问题的可解性、多解存在的条件,周期边值问题(包括微分方程和微分系统的周期解,时滞微分方程的周期解)解的存在性,微分系统边值问题的一般理论等,在介绍新结果的同时展示所用方法的特点,补充了线性边值问题的一般解法,提出了上下解方法的匹配概念,给出了线性微分系统边值问题的求解方法。