苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书在“理论够用, 适度延展”的前提下, 内容深度、广度适中, 符合新的应用型人才培养方案和教学需求。结合高等学校目前微积分教学的现状和教学对象, 始终贯彻培养“深造有基础、发展有后劲”的高素质应用型人才。教材以函数为研究对象, 以极限为基本工具, 主要讨论函数的微分和积分问题以及无穷级数、常微分方程及差分方程, 并要求会应用理论知识解决相应的实际问题。
本书介绍了*延迟微分方程及其数值解,深入分析了方程及其算法的稳定性质.书中涉及的算法包括BEM算法和* 算法,研究中借助构造的 衰减因子 使得结果可以涵盖带无界变动延迟的系统,这是本书的一大特色.全书结论都是建立在高度非线性的假设条件下的,而非使用传统的线性增长条件,这是本书的另一大特色.本书可作为数学专业高年级本科生及概率论与数理统计专业研究生的选修课程的教材,也可供科技工作者和教师参考.
本书是作者根据多年来为北京大学力学系研究生和高年级本科生讲授同名课程的讲稿编写而成的,书中系统介绍了微分几何的基础知识。全书共分为六章: 章介绍了向量和张量的基本性质;第二章给出了欧氏空间中曲线与曲面的几何;第三章引入了流形的概念及若干性质,如向量的Lie导数的性质;第四章介绍了流形上的微分形式和外微分运算,并给出了几个重要定理的证明;第五章介绍了Lie群与Lie代数的性质,特别是在不变量理论中的应用;第六章介绍了动力系统与Symplectic几何的理论及其在力学中的应用。每章末配有适量的习题,便于读者选用。 本书叙述简明易懂、逻辑严谨、条理清晰,注重分析及应用,着重在所介绍内容和力学理论的联系上举一些例子,如应变和Lie导数的关系、协调方程、Hamilton力学的几何理论等等。
微分遍历论研究微分动力系统的遍历理论,亦称光滑遍历论。对于保持概率测度的微分动力系统,研究几乎所有状态点(亦称典型状态点)的运动轨道的拓扑结构,揭示混沌运动的统计一致性态。本书介绍微分动力系统的遍历理论,重要定理包括乘法遍历定理,Ruelle不等式, Pesin熵公式,Pesin稳定流形定理,Katok跟踪引理,测度逼近定理,指数逼近定理等。在这样一个较专门化的课程中我力图兼顾普遍性,比如第1章用微分方程Lyapunov稳定性引出了微分遍历理论课题,第2章介绍了廖山涛的格数理论。本书第7章稳定流形定理只介绍定理而不讲证明,因为定理证明线索过长且基本思路在微分动力系统里已经建立。