本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
《微积分习题与典型题解析》根据普通高校微积分课程教学大纲,并参照***考试中心颁发的《全国硕士研究生入学统一考试数学考试大纲》编写,内容分为函数与极限、连续性与导数概念、微分中值定理与导数的应用、不定积分、定积 、分、定积分的应用与反常积分、空间解析几何、多元函数微分学、二重积分与三重积分、曲线积分与曲面积分、数项级数与幂级数、微分方程等12个专题,每个专题含 重要概念与基本方法 习题选解 典型题选解 三个部分,其中 习题 选自张玉莲、陈仲等编著的《微积分》(Ⅰ,Ⅱ)一书的习题, 典型题 选自全国历年硕士研究生入学试题、南京大学历年硕士研究生入学(单考)试题以及编者收集和原创的 好题 . 《微积分习题与典型题解析》可供各类高等学校的大学生作为学习微积分或高等数学课程和考研复习的参考书,
本书是大学数学系列创新教材之一,内容主要包括:实数集与函数及其应用、极限及其应用、连续性及其应用、一元微分学及其应用、一元积分学及其应用、常微分方程与常差分方程及其应用。本书特点鲜明、内容丰富、例题典型、习题代表性强、应用事例和探究课题值得关注。本书主要是基于“强基计划”、“本硕博贯通”和“新工科”各专业创新人才培养理念,加强厚实的数学基础,加强数学思想方法和应用数学能力,强化逻辑思维能力的培养而编写的。 本书可作为研究型大学理工科学生一年级 学期的数学课程教材或者教学参考书,同时也可作为研究生入学考试中高等数学科目的复习资料和教师的教学参考书。
《微积分(经管类)(第三版)》是根据教育*“经济管理类本科数学基础课程教学基本要求”,并结合编者长期在教学线积累的丰富教学经验编写而成.《微积分(经管类)(第三版)》共11章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数、微分方程、差分方程.《微积分(经管类)(第三版)》按节配置适量习题,每章配有总习题,书末附有习题参考答案及提示,便于读者参考.《微积分(经管类)(第三版)》以经济类、管理类学生易于接受的方式,科学、系统地介绍了微分与积分的基本内容,重点介绍了微积分的方法及其在经济、管理中的应用.
本套书由《微积分I(第二版)》、《微积分II(第二版)》两本书组成.《微积分I(第二版)》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何.在附录中简介了行列式和矩阵的部分内容.《微积分II(第二版)》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等.本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当.
《微积分和数学分析引论 **卷(**分册,第二分册)》系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,**卷为单变量情形,第二卷为多变量情形。 **卷中译本分两册出版。《微积分和数学分析引论 **卷(**分册,第二分册)》为**卷**分册,包括前三章,主要介绍函数、极限、微分和积分的基本概念及其运算。《微积分和数学分析引论 **卷(**分册,第二分册)》包含大量的例题和习题,有助于读者理解《微积分和数学分析引论 **卷(**分册,第二分册)》的内容。
《微积分学导论(上册 第2版)》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今工科数学教育的发展,并满足培养学生的要求。《微积分学导论(上册 第2版)》分上、下两册出版,内容包含微积分学的核心内容及其应用。 《微积分学导论(上册 第2版)》是上册,内容包括实数与函数、极限理论、单变量函数的微分学、单变量函数的积分学、微分方程等五章。《微积分学导论(上册 第2版)》的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象
本书内容包括常微分方程两点边值问题的差分解法、椭圆型方程的差分解法、抛物型方程的差分解法、双曲型方程的差分解法和有限元方法简介。力求做到:(1)精选内容。重点介绍有限差分方法。(2)难点分散。对于差分方法,先从常微分方程两点边值问题出发,介绍差分方法的有关概念以及常用的分析技巧,然后将这些概念和技巧分别应用于椭圆型方程、抛物型方程和双曲型方程的数值求解。对于有限元方法,也先从常微分方程两点边值问题出发,介绍有限元方法的基本思想,再研究椭圆型方程的有限元解法。(3)强调会“用”各种数值方法。先举例示范,再要求学生模仿,*后到熟练掌握。书末的两个附录分别介绍有限Fourier级数法和Schrodinger方程的差分方法。
该书稿是《微积分(经管类 简明版 第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
本书为普通高等教育 十一五 ***规划教材,分为常微分方程的数值解法、偏微分方程的差分方法和有限元方法三部分,共8章.内容包括常微分方程初值问题、椭圆型方程、离散方程的数值解法、抛物型方程、双曲型方程、边值问题的变分原理与广义解、有限元方法的基本过程及其进一步的讨论.《BR》 本书在不太高的起点上循序渐进,通过一些典型有效的方法阐明构造数值方法的基本思想,尽可能精确地叙述必要的基本概念.每章都有习题和小结,书末附有部分习题答案及提示,宜于教学和自学.