许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
本书由数学建模概述、微分方程建模方法及应用、差分方程建模方法及应用等内容组成,系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中,本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。立足初等数学基础,兼顾高等数学知识的过渡和有效拓展,深入探讨典型数学模型的基本原理、建模思想与建模流程,每一种方法都有相应的应用案例,本书兼具理论性与实用性,文字通俗易懂、深入浅出,可供数学建模应用研究者及感兴趣者阅读使用。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书共分8章:点集拓扑学的一些知识,点集拓扑学的进一步知识,基本群与覆盖空间,单纯复形,流形,同调论与deRham理论,曲面的内蕴Riemann几何,嵌入R3中的流形,详细地介绍了拓扑学与几何学的相关知识,并给出了许多重要定理的证明方法.
本书在详细回顾我国城市交通节能减排工作现状的基础上,梳理了我国城市交通碳排放的 主要影响因素、国内外城市交通碳排放监测评估的研究和应用进展等,提出了城市交通环境 排放监测评估、预测方法与模型。为验证该模型,分别利用模型开展了案例城市的交通碳排 放现状评估和我国未来城市交通领域的二氧化碳排放预测。 本书可供国内外城市交通领域相关研究人员、政府交通管理人员参考,亦可供相关专业院 校师生学习使用。
《微积分简明教程》是同济大学数学科学学院承担高等数学课程的骨干教师,在借鉴了同济大学相关优秀教材的基础上编写而成的,内容包括一元及多元函数微积分理论和应用。全书通过探讨数学思想的本质阐述数学理论,避免过多的数学公式和繁琐的计算技巧,注重数学理论与实际生活的联系;并通过巧妙地使用数学史、科学家文献中的原始论述等,使历史背景与理论知识无缝对接,延伸了知识点的内涵。 《微积分简明教程》直观易懂、深入浅出,符合文科学生的学习特点,可供高等院校文科专业的学生使用,也可供相关人员参考。