基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
本书根据高等教育教学内容和课程体系改革的要求和科技发展的需要,结合编者多年教学、科研实践经验编写而成。本书以几何量精度设计与检测为主线,遵循“加强基础、精选内容、调整体系、重在应用”的编写原则,采用新的国家标准,阐述了本学科的基本理论和基本知识。全书分为四个部分:*部分为几何量精度设计基础,包括绪论、尺寸精度、几何精度、表面粗糙度和尺寸链;第二部分为典型件几何量精度设计,包括滚动轴承、圆柱螺纹、键和花键、渐开线圆柱齿轮;第三部分为几何量精度检测,包括几何量测量基础、孔及轴尺寸的检测和检测综述;第四部分为几何量精度综合设计与综合实验。本书附录中有各章思考题和习题、相关公差表格及常用术语的汉英对照。本书配有电子课件。
本书是对粗几何领域的一次全面而深入的探索。它不仅仅梳理了粗几何的基本理论,更对粗几何中的核心问题进行了深刻的研究。对于从事几何、群论、指标理论、非交换几何以及大数据分析等领域研究的学者来说,本书无疑是一本极具价值的参考书籍。
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性公理,引理及其应用,紧致性与列紧性,局部紧性与仿紧性,连通性,道路连通性,商映射与商空间,几个典型曲面与闭曲面分类定理,点网与滤子,函数空间,映射的同伦与基本群的定义,球面的基本群,基本群的同伦不变性,基本群的计算,同伦提升定理与映射提升定理,复叠空间及其基本性质,复叠变换与正则复叠空间,单纯复形的同调群,同调群的性质,同调群的基本计算,单纯映射与单纯逼近,重心重分与单纯逼近存在定理,连续映射诱导的同调群同态,同调群的同伦不变性,同调序列,球面自映射的映射度,保径映射的映射度及其应用,Lef
《三维流形拓扑学讲义》主要介绍低维拓扑和Casson理论,当然也不失适时地引入*近研究进展和课题。包括许多经典材料,如Heegaard分裂、Dehn手术、扭结和连接不变量。从Kirby微积分开始,进一步讲述Rohlin定理,直到Casson不变量及其应用,并以简短介绍*进展作为结束。熟悉基础代数和微分拓扑,包括基础群、基本同调理论、横截性和流形上的庞加莱对偶性的数学和理论物理专业的读者均可阅读。
本书是作者在复旦大学数学系主讲“空间解析几何”课程20多年的结晶,全书共3章,第一章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系“空间解析几何”课程的考题. 本书可作为综合大学数学和应用数学专业“空间解析几何”课程的教材,也可作为教师教学参考用书.
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。