基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
本书是美国著名数学竞赛专家 Titu andreescu教授及其团队精心编写的试题集系列中的一本 三角函数是构建 Fourier分析、微分方程等诸多数学分支的基础的关键要素,在导航、天文学、建筑学、地图学和数字成像等领域起着至关重要的作用,并且频繁出现在各种数学竞 赛、特别是数学奥林匹克竞赛的题目中.本书给出了关于三角函数的全面综述,介绍了它的基本定义和基本性质,深入研究了三角函数作为实值函数的性质,并且精心挑选了115个三角学的入门问题和高级问题,不仅给出了这些问题的详细解答,还概述了这些问题背后的核心思想 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考
在第1章中编者呈现了最主要的理论,并给出大量的例题,这有助于解决后面的问题。第2章提出了一些问题,要解决这些问题,你需要对在 理论与例题 这一章中出现的材料有一个基本的理解。在第3章中你将会发现一些既需要更深刻理解这一理论的问题,也需要提升在关键概念之间建立关联的能力。在第4章和第5章中编者将提供这些问题的对应解答。 本书适合于正在接受数学奥林匹克训练的学生以及期待在三角学及其相关领域提升能力的读者参考阅读。
本书主要介绍点集拓扑学的基本知识。全书分为十七讲,包括预备知识,拓扑空间的基本概念,拓扑空间之间的连续映射,拓扑基与邻域基,Tychonoff积空间,分离性公理,Urysohn引理与完全正则空间,点网与滤子,拓扑空间的紧致性,列紧性、可数紧性与伪紧性,局部紧性与Baire空间,仿紧性,连通性与道路连通性,度量空间的完备性与完备化,商空间与商映射,函数空间,同伦映射与空间的同伦等价。每讲内容介绍都比较深入,并配备大量的例题和习题。
《三维流形拓扑学讲义》主要介绍低维拓扑和Casson理论,当然也不失适时地引入*近研究进展和课题。包括许多经典材料,如Heegaard分裂、Dehn手术、扭结和连接不变量。从Kirby微积分开始,进一步讲述Rohlin定理,直到Casson不变量及其应用,并以简短介绍*进展作为结束。熟悉基础代数和微分拓扑,包括基础群、基本同调理论、横截性和流形上的庞加莱对偶性的数学和理论物理专业的读者均可阅读。
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性公理,引理及其应用,紧致性与列紧性,局部紧性与仿紧性,连通性,道路连通性,商映射与商空间,几个典型曲面与闭曲面分类定理,点网与滤子,函数空间,映射的同伦与基本群的定义,球面的基本群,基本群的同伦不变性,基本群的计算,同伦提升定理与映射提升定理,复叠空间及其基本性质,复叠变换与正则复叠空间,单纯复形的同调群,同调群的性质,同调群的基本计算,单纯映射与单纯逼近,重心重分与单纯逼近存在定理,连续映射诱导的同调群同态,同调群的同伦不变性,同调序列,球面自映射的映射度,保径映射的映射度及其应用,Lef
《的实验与观察:力学发展的基础》共收录了关于力学发展史上的实验与观察的15篇文章。内容包括:漫谈杠杆原理;斯蒂文的尖劈;第谷的观测与开普勒的行星运动定律;伽利略的斜面上下落实验;碰撞问题;玻意耳的抽气筒;惠更斯的摆钟;郑玄的弓和胡克的弹簧;伯努利的流体动力学;焦耳的热功当量实验;卡文迪许的万有引力实验;湍流;傅科的转动指示器;金属的疲劳;沃尔夫定律。 《的实验与观察:力学发展的基础》可以供高中生、理工科大学生、教师,科研工作者以及对科学史感兴趣的读者阅读和参考。
基础拓扑学是数学的重要分支,内容丰富且应用面广.本书以点集拓扑学为基础,通过对一般拓扑学、测度论、拓扑向量空间、拓扑群及拓扑动力系统的一些专题进行论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些主要内容.本书主要内容包括:集合与序集、可测映射与可测空间、拓扑空间、几类重要的拓扑性质、紧空间与度量空间、广义度量空间、拓扑向量空间简介、动力系统与拓扑群简介和不动点理论简介.目的是向读者简要介绍基础拓扑学中的一些基本内容、研究思路和解决问题的方法.
本书介绍了有关四面体的部分内容:四面体中的面角关系;有关体积问题;四面体对棱所成的角及距离;几种特殊四面体;四面体的某些不等式与恒等式。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
本书共八章,主要包含圆锥曲线的由来、定义、方程、性质、切线和法线、作图、通论以及举例应用等内容,深入浅出,通俗易懂。 本书适用于中学生和数学教师参考使用,也可供数学爱好者作为科学普及读物阅读。
可拓学是中国学者蔡文研究员于1983年提出的、聚焦于矛盾问题求解和智能化处理的新学科。它通过探讨古往今来人们处理矛盾问题的规律,建立了一套程序化的方法,使人能够按照程序处理矛盾问题,利用计算机和网络帮助人们生成解决矛盾问题的创意和新产品创意。历经30多年的发展,建立了基础理论 可拓论和应用方法 可拓创新方法,并在各领域应用形成可拓工程。目前可拓学已应用于工程科学、信息科学、经济与管理等多个领域的矛盾问题处理和产品创新、设计创新、管理创新等,获得多项专利;应用可拓学的理论和方法研究了用计算机帮助人们解决矛盾问题的工具,获得多项软件*作权。可拓学成果获得学术界和国家科技部门的高度评价,国际化和社会化工作成效显着。杨春燕、汤龙主编的《中国原创学科可拓学发展报告(2016中国人工智能学会系列研究
本书对非线性代数方程组符号求解方法与非线性*化方法进行简单论述,讨论求解一元高次代数方程实根的定位算法和求代数数根界的算法;讨论多项式商环对偶空间的基的显示表示和*化中的几个问题解的等价性;对对几何约束问题能产生较少的方程个数的理论和方法进行系统论述,结合非线性代数方程组符号求解方法与数值求解方法的优势,系统地给出一个求解几何约束问题的完整算法,*后选取几个典型几何约束问题进行了详细求解。