《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
本书(上册)共10章。前5章讲授微分几何入门知识,第6章以此为工具剖析狭义相对论,第7~10章介绍广义相对论的基本内容。本书强调低起点(大学物理系本科2~3年级水平),力求化难为易,深入浅出,为降低难度采取了多种措施。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
内容简介:本书从14个方面介绍了各类范例200余道一题多证(解).主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧. 本书内容适合初高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的 竞赛数学 或 初等数学研究 等课程的数学参考书.
无
本书对泛函分析的重要研究方向——Banach空间的凸性理论作了比较全面的总结,内容基本覆盖了近八十年凸性方面的主要研究成果,介绍了Banach空间的严格凸和一致凸的很多推广,也有很多关于范数可微和Banach空间的光滑性方面的结果.另外,对于光滑性很差的范数的性质,如粗范数,也作了较全面的介绍.
内容简介:本书为《平面几何图形特性新析》的下篇,以专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。 本书内容适合初 、 高中学生 , 尤其是数学竞赛选手和初 、 高中数学教师 , 以及数学奥林匹克教练员使用 , 也可作为高等师范院校数学教育专业 , 以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书 。
无
本书提供给读者一个对复分析的深刻理解以及这门学科是如何融入数学的。 该书是从伊利诺伊大学香槟分校的校园荣誉计划中的讲座发展起来的。这些课程的目标是让学生体会到当以复分析的观点对待许多数学和物理问题时,问题便被神奇地简化了。此书从初等的水平出发,但也包含了高级的材料。 本书的前四章给出了对复分析及其许多初等但非寻常应用的一个导引,第5 到第7 章发展了Cauchy理论,包括一些引人注目的对于微积分的应用。第8 章则探讨了一些吸引人的论题,使全书连成一个有机的整体并对深入研究打开了大门。 280 个习题囊括了从简单计算到难解之题。这种多样性使得此书独具吸引力。 只阅读前四章的读者将能够在初等情形中应用复数。研读整本书将能了解基本的单复变论并将目睹它作为一个整体融合进数学中。数学研究工作者也会发
该书主要介绍了欧几里德空间中的二维曲面及其与黎曼几何的关系,同时包括了一些尚未解决的难题,对从事该领域研究的研究生和科研人员有很好的启发作用和参考价值。
本书系统介绍了几何定理机器证明的几何不变量方法.主要包括:基于面积与勾股差等几何不变量的面积法、基于体积与勾股差等几何不变量的体积法以及基于向量计算的向量方法.与基于坐标的几何定理机器证明方法(如吴(文俊)方法与Groebner基方法)相比,基于几何不变量的几何定理机器证明方法可以产生较为简洁与可读的证明,从而提高机器证明的质量.作为应用,该方法可以用来简化工程技术领域(如机器人、机构学、计算机视觉等)中出现的几何计算问题.本书还介绍了几何定理机器证明的演绎数据库方法以及面积法在非欧几何中的推广.
全套书对1978~2016年的全国高中数学联赛(包括全国女子竞赛、西部竞赛、东南竞 赛、北方竞赛)、中国数学奥林匹克竞赛(CMO,即全国中学生数学冬令营)、中国国家队队员选拔赛以及IMO试题中的200余道平面几何试题进行了诠释,每道试题给出了尽可能多的解法(多的有近30种解法)及命题背景,以150个专题讲座分4卷的形式对试题所涉及的有 关知识或相关背景进行了深入的探讨,揭示了有关平面几何试题的一些命题途径.本套书极大地拓展了读者的视野,可全方位地开启读者的思维,扎实地训练其基本功 本套书适合于广大数学爱好者,初、高中数学竞赛选手,初、高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*、省级骨干教师培训班参考使用
本书介绍了拓扑群的基本概念、测度与积分、拓扑群(特别是紧、局部紧的拓扑群)的表示,同时讨论齐性空间、群代数和K理论的一些相关结果.内容由浅入深,直至近代的重要成果.