本书作为一部论述生物数学思想的专著,尝试将生物数学思想从其内部打通,以生物数学思想的起源与形成为主线,通过透析生物数学思想演变的内在逻辑,窥觅到它的产生和发展是环环相扣的有机的统一体。本书首先对生物数学的思想体系进行整体梳理。然后把握生物数学思想产生和发展过程中各个阶段的关键点;选择具有代表性的种群动态数学模型的产生和发展过程作为突破口,并详细介绍这类生物数学模型在产生和发展过程中所经历的15种形态;详尽分析生物数学四大分支的起源与形成过程;选择生物数学思想演变过程中的5位代表人物进行个案分析;细致探析生物数学的社会化过程;给出生物数学思想未来发展方向的三点展望。*后,叙述中国生物数学的开拓过程。
数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21 章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic 回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)间序列分析、Markov 链、R/S 分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者可以通过实例解析了解有关方法的应用要领和分析思路。
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
无
本书针对火焰锋、浅水波与传输特征问题,在介绍谱方法预备知识的基础上,讨论了求解这三类问题的数值方法,主要包括数值格式的构造、稳定性分析、基函数的构造、误差分析和数值模拟等,将数值结果与相关文献和理论的结果进行对比,证实了本书讨论的数值方法的有效性和稳《BR》定性。
本书以系统分析中的建模理论与方法为研究对象,在分析离散事件系统、系统动力学以及多智能体建模基本理论与方法基础上,阐述多方法建模的基本原理和方法。主要内容包括:综述系统、模型、建模和仿真的基本概念、基本理论以及基本方法;在论述离散事件系统、系统动力学以及多智能体基本建模理论基础上,分析比较了三种建模方法的差异性,并对离散事件系统、系统动力学以及多智能体建模过程中基本方法、步骤和流程进行阐述;以离散事件系统建模、系统动力学建模以及多智能体建模为基础,阐述多方法建模的基本原理和基本实现方法,同时对三种建模方法实现过程进行了比较,结合实例分别展示多智能体与系统动力学联合建模、多智能体、系统动力学与离散事件系统联合建模的具体实现过程。
微粒群算法是一种模拟动物群体社会行为的群智能优化算法,现已成为自然计算的一个重要分支。本书分为9章,第1、第2章介绍了微粒群算法的概念、基本方程以及相关社会行为分析等,并给出了一个较为详细的综述。第3-5章从生物学背景出发,分别从个体的觅食时间、觅食行为、觅食决策等方面探讨了微粒群算法的改进模式。第6-8章的研究内容则从控制角度出发探讨微粒群算法的相关控制方式。在现实世界中,由于目标函数计算困难或计算时间较长等因素,许多复杂的优化问题难以利用微粒群算法进行优化。为此,第9章利用适应值预测方式来提高算法性能,从而为解决相关应用问题提供了参考。
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
本书详细介绍噪声作用下非线性复杂网络系统的同步与共振动力学。结合作者的研究成果,主要介绍噪声对非线性系统同步动力学的积极作用,空间关联噪声下神经元网络的完全同步,两个时滞耦合网络之间的*同步,基于*同步对网络未知信息的辨识,离散型模块神经元网络的簇同步动力学,复杂网络系统的*共振动力学,以及神经元网络的时空动力学。本书的特点是以介绍噪声诱导非线性网络系统的有序动力学为主线,以分析网络的同步与共振动力学特性为重点,突出耦合时滞和网络结构影响的分析。本书重视理论分析与数值仿真的密切结合,适当介绍基础知识,图文并茂、系统性强,对丰富非线性*动力学和网络科学的理论与方法、推进复杂系统的研究具有一定的作用。
通过阐述数学模型在生态学的应用和研究,定量化的展示生态系统中环境因子和生物因子的变化过程,揭示生态系统的规律和机制,以及其稳定性、连续性的变化,使生态数学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过杨东方、陈豫编*的《数学模型在生态学的应用及研究(37)》的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。 本书主要内容为:介绍各种各样的数学模型在生态学不同领域的应用,如在地理、地貌、水文和水动力,以及环境变化、生物变化和生态变化等领域的应用。详细阐述了数学模型建
本书系统介绍了非线性系统的动力学行为及其数值分析问题,综述了非线性系统的分岔与混沌的发展历史和研究方法,包含了作者近年来在这一领域取得的一些研究成果。包括五方面内容:非线性系统的分岔和混沌行为简述及其相关研究方法概述;微分方程稳定性与定性理论;分歧及其数值计算方法简介;非线性系统的混沌行为分析;无穷维混沌系统的低模分析及其数值仿真问题。
时滞神经网络是高度非线性的动力学系统,具有丰富的动态行为,在模式识别、信号处理、联想记忆、保密通信和全局优化等领域得到了广泛应用.《BR》本书主要介绍时滞神经网络的基本理论知识,平衡状态的局部稳定性与分支分析、全局鲁棒稳定性,周期解的存在性与稳定性,以及具有不同时间尺度的竞争神经网络、具有leakage时滞的神经网络和广义反应扩散神经网络的同步控制.本书内容丰富、方法实用,理论分析与数值模拟相结合,写作时注重系统性与简洁性,由浅入深,使读者能够尽快了解和掌握时滞神经网络稳定性和同步控制的研究方法及前沿动态.