数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21 章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic 回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)间序列分析、Markov 链、R/S 分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者可以通过实例解析了解有关方法的应用要领和分析思路。
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
无
本书介绍了种群生态学研究中建立随机数学模型的方法、某些重要的随机模型以及它们的理论分析、已经得到的一些结果和一些尚未解决的问题,涉及生物数学中的许多重要问题,包括随机环境中单种群和多种群系统的持久性、灭绝性、吸引性、有界性、随机稳定性;依分布稳定性;可更新生物资源的开发、利用;随机环境下的生物保护区模型;污染环境中的生态系统的生存与灭绝问题;流行病的传播规律问题;神经网络的性质;随机均衡解和随机周期解的存在性、**性和稳定性的研究以及带有时滞的生态系统的研究等问题。某些模型和相关问题是作者及其合作者首次提出的,并由此得到一些全新的结果。
本书系统介绍了非线性系统的动力学行为及其数值分析问题,综述了非线性系统的分岔与混沌的发展历史和研究方法,包含了作者近年来在这一领域取得的一些研究成果。包括五方面内容:非线性系统的分岔和混沌行为简述及其相关研究方法概述;微分方程稳定性与定性理论;分歧及其数值计算方法简介;非线性系统的混沌行为分析;无穷维混沌系统的低模分析及其数值仿真问题。
本书系统介绍忆阻神经网络的动力学性态分析与同步控制问题的数学建模思想、典型理论方法和主要研究成果。主要内容涉及忆阻神经网络的耗散性与无源性分析、稳定性分析和同步控制方法,也介绍有关耦合忆阻神经网络与分数阶忆阻神经网络同步控制研究成果,并在同步控制分析基础上介绍忆阻神经网络在图像保密通信、信号处理与医学图像处理中的具体应用。本书重点介绍忆阻神经网络动力学与同步控制的理论分析和数值模拟方法,内容丰富全面、方法实用完备,反映了当前国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者系统了解和掌握忆阻神经网络动力学与同步控制的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
本书是一本全面论述非线性区间优化设计理论与方法的专著。全书共12章,首先,从数学规划理论的层面提出了一种能处理一般性不确定优化问题的非线性区间优化的数学转换模型,实现了区间优化向确定性优化问题的转换;接着,基于数学转换模型开发了多种具有一定工程实用性的高效区间优化算法,其中着重解决了两层嵌套优化造成的效率低下问题;然后,将非线性区间优化拓展至多目标、多学科、参数相关性等问题,并构建了相应的区间优化模型及求解算法;*后,将相关方法应用于机械工程及相关领域的一些实际工程问题,在解决问题的同时验证了理论与方法的有效性。
微粒群算法是一种模拟动物群体社会行为的群智能优化算法,现已成为自然计算的一个重要分支。本书分为9章,第1、第2章介绍了微粒群算法的概念、基本方程以及相关社会行为分析等,并给出了一个较为详细的综述。第3-5章从生物学背景出发,分别从个体的觅食时间、觅食行为、觅食决策等方面探讨了微粒群算法的改进模式。第6-8章的研究内容则从控制角度出发探讨微粒群算法的相关控制方式。在现实世界中,由于目标函数计算困难或计算时间较长等因素,许多复杂的优化问题难以利用微粒群算法进行优化。为此,第9章利用适应值预测方式来提高算法性能,从而为解决相关应用问题提供了参考。
内容简介: 本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答. 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助. 本书适合中学生及数学爱好者参阅.
本书讲述能量泛函正则化模型理论分析及应用。主要内容包括能量泛函正则化模型国内外发展现状,图像稀疏化基本理论,半二次型能量泛函正则化模型基本原理及应用,能量泛函正则化模型整体处理、分裂原理、对偶模型分裂原理、原始-对偶模型分裂原理及在图像恢复中的应用。
《地下水运动数学模型》重点介绍了地下水运动、土壤水运动和溶质运移的基本理论;河渠影响下地下水运动模型及解析解;井流条件下地下水运动模型及井流试验求参方法;地下水数值模拟常用数值方法和数值模型;非饱和带水分运动模型;地下水溶质运移模型和数值方法;地下水分运动的*数值模型和时间序列分析模型。书中还简单介绍了分析地下水运动、土壤水运动和溶质运移的常用软件和数值方法。 《地下水运动数学模型》可作为水文学与水资源、农田水利、农业水土工程、水文地质、土壤物理等专业的选修课教材,也可作为相关专业科研、教学和工程技术人员的参考书。
本书以系统分析中的建模理论与方法为研究对象,在分析离散事件系统、系统动力学以及多智能体建模基本理论与方法基础上,阐述多方法建模的基本原理和方法。主要内容包括:综述系统、模型、建模和仿真的基本概念、基本理论以及基本方法;在论述离散事件系统、系统动力学以及多智能体基本建模理论基础上,分析比较了三种建模方法的差异性,并对离散事件系统、系统动力学以及多智能体建模过程中基本方法、步骤和流程进行阐述;以离散事件系统建模、系统动力学建模以及多智能体建模为基础,阐述多方法建模的基本原理和基本实现方法,同时对三种建模方法实现过程进行了比较,结合实例分别展示多智能体与系统动力学联合建模、多智能体、系统动力学与离散事件系统联合建模的具体实现过程。
本书作为一部论述生物数学思想的专著,尝试将生物数学思想从其内部打通,以生物数学思想的起源与形成为主线,通过透析生物数学思想演变的内在逻辑,窥觅到它的产生和发展是环环相扣的有机的统一体。本书首先对生物数学的思想体系进行整体梳理。然后把握生物数学思想产生和发展过程中各个阶段的关键点;选择具有代表性的种群动态数学模型的产生和发展过程作为突破口,并详细介绍这类生物数学模型在产生和发展过程中所经历的15种形态;详尽分析生物数学四大分支的起源与形成过程;选择生物数学思想演变过程中的5位代表人物进行个案分析;细致探析生物数学的社会化过程;给出生物数学思想未来发展方向的三点展望。*后,叙述中国生物数学的开拓过程。
本书针对火焰锋、浅水波与传输特征问题,在介绍谱方法预备知识的基础上,讨论了求解这三类问题的数值方法,主要包括数值格式的构造、稳定性分析、基函数的构造、误差分析和数值模拟等,将数值结果与相关文献和理论的结果进行对比,证实了本书讨论的数值方法的有效性和稳《BR》定性。
《现代精算风险理论——基于R(第二版)》对非寿险数学做了全面详尽的概述,内容包括效用理论和保险、个体风险模型、聚合风险模型、破产理论、保费原则和风险度量、奖惩系统、风险排序、信度理论、广义线性模型、IBNR技术和关于广义线性模型的进一步讨论。《现代精算风险理论——基于R(第二版)》收录了丰富的例题,章末附有习题,并强调通过R软件来实现这些方法。《现代精算风险理论——基于R(第二版)》的内容和方法也适用于非寿险的研究,精算领域其他分支学科的研究,以及在精算实务中的应用研究。
本书是中国科学院系统科学研究所组织汇编的系列丛书《系统科学进展》的第2卷,收集了包括吴文俊、郝柏林、陆汝钤、颜泽贤等著名学者的重要文献,内容涉及复杂性探索、系统普适规律、数学机械化、机器学习、人机结合、中医系统学、系统经济学等。阅读本书,有助于读者学习系统科学的相关思想和近期发展,了解系统科学的发展方向,提升系统思维素养。这是一本值得收藏的系统科学经典之作。
杨辉算书包括的《详解九章算法》(1261年)、《日用算法》(1262年)、《乘除通变算宝》(1274年)、《续古摘奇算法》(1275年)、《田亩比类乘除捷法》(1275年)是中国古代数学高峰时期的重要标志之一,对元明清数学的发展产生了重要影响。杨辉注重算题的典型性和趣味性,注重选择与生活实际和社会现实联系比较密切的问题,他在“算无定法,惟理是用”的原则指导下,主要围绕着实际问题而进行算法提炼和方法构造,并在此基础上形成了具有中国特色的古代经济数学思想体系。