《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
支持向量机的研究是近十余年机器学习、模式识别和数据挖掘领域中的研究热点,受到了计算数学、统计、计算机、自动化和电信等有关学科研究者的广泛关注,取得了丰硕的理论成果,并被广泛地应用于文本分类、图像处理、语音识别、时间序列预测和函数估计等领域,本书首先介绍了核函数的概念;然后从几何直观的角度介绍了建立二分类模型和回归模型过程中所取得的理论成果;*后对于分解算法、*小二乘支持向量机、多分类、模糊支持向量机、在线学习和大规模分类相关的优秀成果进行了归纳和整理,从数学上对相关算法的原理进行了详细分析。本书的内容既包括支持向量机的**进展,也包括作者的多年研究成果。作者希望本书能够有助于对机器学习、模式识别和数据挖掘感兴趣的读者更加快速地了解支持向量机的**研究动态,能够有助于读者理清算法的本
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括: 预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。
随着科学计算水平的不断提高,数值模拟成为自然科学领域的关键技术手段。对于流体领域的研究者,动力学数值模拟是描述流体运动客观现象及规律的重要工具,也是深刻理解流体及其伴生要素输移运动基本理论的重要途径。随着数值模拟的重要性日益显著,数值模拟的核心问题即数学模型的可靠度和准确性也备受关注,如何度量科学计算的综合性能,如何确认和验证模型的计算结果,是流体数值模拟领域进行行业标准化应用和推广亟待解决的重要科学问题。 目前,靠前同业对科学计算确认与验证评价传统模式主要是通过实测资料对模型进行验证以及主观因素为知名品牌的专家评审,针对河流动力模型数值解的可靠性、准确性分析及结果可信度研究甚少。纵观河流数值模拟领域,仍缺乏一套科学规范的可度量评价体系,导致模型性能难以合理的确认和验证,模型
本书讨论处理无约束**化问题的数值方法,主要包括Newton法。共轭梯度法、拟Newton法、Powell直接方法以及非线性小二乘法,并且阐明了其理论、应用和发展动向。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
无
本书阐述自适应Fourier分解(AdaptiveFourierDecomposition,AFD)及单分量函数论的数学理论及应用。按照理论发展的顺序,第3章单分量函数论应该在第2章AFD理论之先的,后者作为单分量函数分解的特殊情况。尽管如此,我们选择优先讲述AFD的理论。第3章通过单复变量几何分析的研究建立了单分量函数的理论。第4章讲述单分量函数论对数字信号处理的奠基性的应用,其中包括由AFD引出的Dirac型时间-频率分布的理论,以及对经典Heisenberg型测不准原理的改进。在第5章中,应用调和分析及单复变量分析方法,我们发展了前移及后移不变子空间的理论,并将该研究用于频带保持、相位重构、以及Bedrosian方程式的解。AFD与单分量函数的思想贯穿一维单复变结构下的两个典型流型,即圆与直线(第2章);高维两种复结构(Clifford代数及多复变量)之下的Euclid空间、实球壳以及多环面
本书系统介绍了线性代数方程组求解和矩阵特征值问题中一些重要的计算方法以及Jacobi矩阵的重要性质和它的特征值反问题.线性代数方程组求解方面的内容包括:共轭斜量法、SYMMLQ方法、极小残量法、GMRES法、对称化方法、QMR法、CGS法、BICGSTAB法、HSS法以及SSS算法等;矩阵特征值问题方面的内容包括:QL方法、Rayleigh商迭代法、分合法、Lanczos方法、QR方法、子空间迭代法、Arnoldi法、Jacobi-Davidson方法以及QZ算法等;Jacobi矩阵方面的内容包括:极值性质、推广的根的隔离定理、Paige公式以及它与Gauss型求积公式的关系等;在Jacobi矩阵特征值反问题方面介绍了三个基本问题:(k)问题、双倍维问题和周期Jacobi阵问题.
本书把握当今信息时代数字化、互联网、大数据三大技术特征,着眼于当代科学活动及科学文本的大数据引领科学计量学深刻变革的理念,从理论基础和应用两个方面介绍科学计量大数据的**进展。理论基础部分,从科学计量的大数据基础的角度,论述了数字出版、互联网与科学计量大数据,面向科学计量的数据体系;科学论文的使用数据和论文使用数据的开放获取优势;应用部分,分别探讨了科学家的工作时间表,科学论文在社交网络中的传播机制,实时追索论文使用数据呈现的研究热点与研究前沿,以及基于使用、引用等多重指标的单篇论文评价体系。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
《现代数值计算方法(MATLAB版)(含光盘)》阐述了现代数值计算的基本理论和方法,包括数值计算的基本概念、解线性方程组的迭代法和直接法、插值法与*小工乘拟合、数值积分和数值微分、常微分方程的数值解法、非线性方程的迭代解法以及矩阵特征值问题的计算等。《现代数值计算方法(MATLAB版)(含光盘)》有丰富的例题、习题和上机实验题。《现代数值计算方法(MATLAB版)(含光盘)》既注重计算方法的实用性,又注意保持理论分析的严谨性,强调数值方法的思想和原理在计算机上的实现。选材恰当,系统性强,行文通俗流畅,具有较强的可读性。
本书论述了解非线性方程组的基本理论和方法,着重介绍:Newton法、单纯形算法、同伦延招法、区间迭代法,以及计算机数学库中常用的新算法,还介绍了方法的收敛性定理和方程解的存在**位,并且给出了有实际应用价值的、效果好的算法步骤和数值例题。