本书介绍了过去三十年发展起来的张量网络态重正化群理论。本书首先介绍了张量网络态的分解和取值所需的张量代数基础。之后,本书又介绍了量子态的张量网络表示、量子算子、配分函数(例如矩阵乘积态)、投影纠缠对态等。 接下来,本书又介绍了密度矩阵重正化群(DMRG)及其各种拓展,比如动量空间DMRG、经典或量子跃迁矩阵重整化群方法、时间依赖DMRG、动力学DMRG等。 本书适合凝聚态物理,特别是张量网络态领域的科研工作者参考,也可用于初入此研究方向的青年学者学习。
本书是关于群论,特别是点群、空间群、置换群以及他们在凝聚态物理中的应用的专著,同时也是该领域极富盛名的研究生教材。本书内容极其丰富,远超出了一般研究生教材的范围。具体内容包括群的定义和性质、群表示理论的基本定义和定理、群函数、量子力学与群论(包含能级劈裂、选择定则等)、分子系统与群论、分子振动、红外与拉曼活性、晶格对称性、实空间和倒空间的空间群及表示、电子声子色散关系、能带模型、固体中的旋轨耦合、双群、有自旋的能带分析、时间反演对称性、置换群和多电子态张量对称性等,并且在附录中给出了点群、空间群、双群的相关表格。 本书适合从事凝聚态物理科研工作的读者参考,也可作为物理学相关专业研究生的教材。