本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
本书将概率论和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学经济学、化学和生物学等领域中的广泛应用,特别阐述了贝叶斯理论的丰富应用,弥补了其他概率论和统计学教材的不足,全书分为两部分:*部分包括10章,讲解抽样理论、假设检验、参数估计等概率论的原理及其初级应用;*部分包括12章,讲解概率论的*应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容*,体例完整,本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为本科生和研究生相关课程的教材。
《数学与生活(修订版)》以生动有趣的文字,系统地介绍了从数的产生到微分方程的全部数学知识,包括初等数学和高等数学两方面内容之精华。这些知识是人们今后从事各种活动所必须的。书中为广大读者着想,避开了专用术语,力求结合日常逻辑来介绍数学。读来引人入胜,枯燥之感。从中不但可得益于数学,而且还可学到不少物理、化学、天文、地理等方面的知识。
数学是关于数的学问吗?数学是人类的发明还是人类的发现?为什么数学看起来那么抽象深奥?为什么说数学是万学之学? 本书以数学的产生和发展历程为主线,通过数学人物和历史事件对这些问题进行寻根溯源,讲述了一个关于数学渊源的故事,为读者描绘了一幅生动有趣、绚丽迷人的历史画卷。 在本书中,作者把数学的主要分支、理论和应用介绍给读者,其中既没有各种复杂艰深的数学公式和推理证明,也没有大量生僻的数学专业术语,条理清晰,语言通俗易懂。通过阅读本书,读者可以了解数学是怎么诞生的以及什么是数学这两个基本问题,从而以不一样的眼光看待数学这一人类智慧。 本书可供对数学感兴趣的读者阅读。
本书是一部短文集,文章以各自英文标题的首字母按照A到Z的顺序排列,每一篇短文都讲述了一个特定的数学主题,介绍了数学世界不可不谈的伟大定理、难题、争论和不解之谜。作者以简单清晰的笔触,带领读者跨越历史,探索算术的起源、圆的奥秘、无穷级数的难题、无理数的怪异特征等话题,讲述了数学大师们的生活轶事和神秘经历,勾勒出数学的概貌。本书荣获美国出版商协会的 数学佳作奖 ,适合所有喜爱数学知识和历史故事的读者阅读。
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出 严密 与 直观 的结合,重视数学中的 和谐 与 美感 ,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
你觉得数学很无聊吗?再想想。 这本书以趣味的方式讲述了代数学和微积分的故事,探索了数个世纪以来令人惊讶的数学发展过程。你知道布尔代数吗?它只使用了两个数字:1 和 0。在布尔运算中,1 1 总是等于 1。尽管这看起来很奇怪,但这种代数方法被用于在每个微芯片中创建纳米级的电路。此外,我们将会遇到像丢番图和牛顿这样的天才,他们成功地将数学问题转化为通用的技术手段;还会看到古埃及测绘者如何测量土地,欧几里得的《几何原本》为何至今仍未过时,计算机芯片如何处理程序,以及高斯如何在不到 1 分钟的时间里计算出 1 到 100 之间的所有数字相加的和 当时他只有10岁! 这本书旨在激发读者对数学的热情。
本书从历史的视角向我们娓娓讲述数字迷人的发展史,从数字的发明到各种运算符号,从零的出现到超越数的神奇,从十进制到现代的信息论,从第一台计算机的发明到人类计时的方式,展示了数字是如何从生活中来,又是如何影响着我们周围的方方面面的。 你可知道除号原来是一把短剑的样子?你可知道简单如1、2、3这样的数字几乎毁灭了数学?到底什么是虚数?阅读过程中,你会遇到古代的贤者,他们会告诉你何为数字,以及如何使用数字。你还会看到关于数学大师的奇奇怪怪的故事,例如对数的发明人员约翰 纳皮尔手不释鸡,斐波那契用兔子展示数列。 数字表面上看着简单,其实颠覆你的想象。本书将带你踏上全新的旅程,走进美妙的数学世界;为你打开数字的历史之门,探索漫长岁月中惊人、迷人而又恼人的数学,展示比1、2、3丰富得多的数字世界。本
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,*能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己 心中的数学家 。
本书通过大量公式和插图,通俗易懂地介绍了数学基础知识,内容涉及集合、*要条件、充分条件、逆否命题、反证法、概率、二次函数、三角函数、微分法、数列、向量和矩阵等。全书图文清晰直观,基础概念、证明过程一目了然,旨在帮助读者重温数学基础,体会数学的有趣之处。同时,本书还设有 对数的诞生 如何解决数学考试中的难题 等专栏,趣味性十足。
勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为 绝赞的数学科普书 。 《数学女孩5:伽罗瓦理论》从鬼脚图讲起,结合二次方程式的求根公式、尺规作图、群和域等知识,最终带领读者进入伽罗瓦理论的世界,还原伽罗瓦短暂的一生中璀璨不朽的数学成就。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是哈代于1940年写成的心得之作,展现了数学之美、数学的持久性和数学的重要性三大主题。作者从自己的角度谈论了数学中的美学,给众多数学 门外汉 一个机会,洞察工作中的数学家的内心。作者还讨论了数学的本质与特点、数学的历史及其社会功能等诸多话题。该书被称为是 用优雅的语言对数学真谛进行了充分的揭示 ,原汁原味地向读者展示了一位真正、纯粹的数学家的数学思想,是数学的经典读物。
作者从三个方面:数、数与式的运算、数学学科阐述了数学概念的来源,以丰富的史料和通俗易懂的语言,通过图文并茂的形式,展示了数学主要概念产生的缘由与发展的历程。之所以写这本书,是因为数学概念是数学的核心内容,数学概念的教学与学习十分重要。但是,数学概念的教学与学习不能成为死记硬背的教条或单纯演算的训练,这样无助于对数学的理解,也无助于培养独立思考能力。教师和学生应该知道数学概念是从哪里来的,又是怎样演化和完善的。要知道,一个数学概念的形成往往需要一个过程,有时是一个极其复杂的过程。这个过程正是数学发展的过程,了解了这个过程可以使人们更加走近数学,正确认识数学;会让我们感到数学是活的东西而不是死板的玩意;进而开拓思维,激发兴趣,更好地学习数学。
本书是初等数论入门的通俗科普读本。书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。作者用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。本书可作为学生了解数论、提高算术能力的辅助读物,也可作为技术人员理解计算科学的参考用书。
我们是如此需要数学,以至于从远古时代的古巴比伦人开始就已经积累了一定的数学知识。不过,那时的数学还只是观察和经验所得,没有烦琐且枯燥的证明。经过漫长的发展,数学逐渐成为学习和研究现代科学技术必不可少的基本工具,但同时它也成为让不少学生十分苦恼的一门课程。本书汲取最原始的经验,从生活出发,通过有趣的画图练习和模型制作等,向读者展示自然、空间以及时间里的数学知识。 一沙一世界,一花一天堂。 飘落的雪花是几何,太阳、月亮的运转是周期,叶子的节点是数列 换个方式看数学,你将发现自然的美丽及宇宙的秩序。
数学无处不在,从考试中的计算公式,到物理学、经济学等都有数学的影子。数学让人们的生活更加便利。本书作者以简明的文字、轻松的插图介绍了小学和中学阶段的许多数学基础知识。本书共5章。序章为全书内容的引子,简单介绍了数学的诞生和计数单位等;第1章概括了课本中的一些重要公式;第2章介绍了许多重要的并且常见的数学符号,如+、–、×、÷、=、 、 、△、sin、cos、tan等;第3章介绍了二次函数曲线、正弦定理、余弦定理、三角函数等课本上常见的概念;第4章介绍了日常生活中数学的应用,如根据阳历年份算地支、计算空气湿度等。 本书适合小学高年级学生和中学生阅读。
本书为微积分入门科普读物,书中以微积分的 思考方法 为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需 轻松阅读 便可以理解微积分原理的入门书。
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。