本书以中考数学难题和外初中数学竞赛为背景,按照初中数学课程的进度分专题编写,在内容的安排上力求与课堂教学同步,在夯实基础的同时,通过新颖、有趣的数学问题,构建通往中考数学和初中数学竞赛的捷径;在有利于学生把初中数学教材的知识巩固深化的同时,恰到好处地为学生拓宽有关中考和竞赛数学的知识;以中考数学和初中数学竞赛中的热点、难点问题为载体,介绍竞赛数学中令人耳目一新的解题方法与技巧,激发学生创新与发现的灵感,开发智力,提高水平去参加中考数学和初中数学竞赛.本书可供初中数学资优生,准备参加初中数学竞赛及中考的学生,中学数学教师、数学爱好者、高等师范院校数学教育专业大学生、研究生及数学教师参考.
本书的主要内容是介绍非线性波动方程的局部或整体适定性理论、研究方法,以及解的破裂性质等。章,介绍了一些可用变分方法导出的方程与方法,讨论了方程中的一些重要的不变特征及其作用,以及定解问题的提法与研究解的存在性问题的常用方法等。第二章回顾和介绍了了研究偏微分方程理论所需的现代分析或调和分析基础,其中包括可积空间、可微空间、Sobolev空间以及它们之间的一些重要的定性性质和定量关系。函数及其应用,局部化方法与不确定性原理,稳定位相法,Gagliardo-Nirenberg不等式,Moser型估计等一些常用的非线性估计,Fourier限制定理及其各种证明方法等。第三章主要介绍线性波动方程解的表示,解在Sobolev框架下的存在性,能量不等式,衰减估计,Strichartz估计,双线性估计以及波-Sobolev空间及其估计等。第四章主要介绍非线性波动方程的局部适
随着小学新课程改革的不断深入,学习理念和学习方法也随之发生变化,教师、学生以及家长对学习辅导书提出了新的要求。 很多学生从小就非常喜欢数学,并在数学方面得到了良好的教育,并有较好的发展前景。但也有一些学生投入了大量的精力,习题做了一大撂,但成绩仍不理想,甚至感到学习数学是一件很烦恼的事情,不喜欢数学。究其原因,就是没有找到学数学的窍门,没有掌握学数学的规律,没有发现适合自己的学习方法,自然也就感觉不到学数学的快乐。