Python与机器学习这一话题是如此的宽广,仅靠一本书自然不可能涵盖到方方面面,甚至即使出一个系列也难能做到这点。单就机器学习而言,其领域就包括但不限于如下:有监督学习(Supervised Learning),无监督学习(Unsupervised Learning)和半监督学习(Semi-Supervised Learning)。而具体的问题又大致可以分两类:分类问题(Classification)和回归问题(Regression)。Python本身带有许多机器学习的第三方库,但《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及编程实现》在绝大多数情况下只会用到Numpy这个基础的科学计算库来进行算法代码的实现。这样做的目的是希望读者能够从实现的过程中更好地理解机器学习算法的细节,以及了解Numpy的各种应用。不过作为补充,《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及
近百年来,由于大量计算的例子,数论学家增进了他们的直觉性。计算机和精心研制的算法逐渐导致出现了算法数论这一专门的领域。这个年轻的学科和计算机科学、密码学以及数学的其他分支有很强的联系。数学思想往往导致更好的算法,这是此学科的魅力之一;而对算法的广泛研究也促使数学新思想的产生和新问题的探索。本书包括由各领域首屈一指的专家对算法数论各个专题所写的二十篇综述性文章:前两篇文章为引论;随后的八篇文章覆盖了该领域的核心内容:因子分解、素性、光滑数、格、椭圆曲线、代数数论和算术运算的快速算法;后十篇文章就某个专门方面综述一些特殊课题,包括密码学、Arakelov 类群、计算类域论、有限域上的zeta 函数、算术几何与模形式理论。本书可供数学、计算机科学和密码学等相关专业的读者参考。
近百年来,由于大量计算的例子,数论学家增进了他们的直觉性。计算机和精心研制的算法逐渐导致出现了算法数论这一专门的领域。这个年轻的学科和计算机科学、密码学以及数学的其他分支有很强的联系。数学思想往往导致更好的算法,这是此学科的魅力之一;而对算法的广泛研究也促使数学新思想的产生和新问题的探索。本书包括由各领域首屈一指的专家对算法数论各个专题所写的二十篇综述性文章:前两篇文章为引论;随后的八篇文章覆盖了该领域的核心内容:因子分解、素性、光滑数、格、椭圆曲线、代数数论和算术运算的快速算法;后十篇文章就某个专门方面综述一些特殊课题,包括密码学、Arakelov 类群、计算类域论、有限域上的zeta 函数、算术几何与模形式理论。本书可供数学、计算机科学和密码学等相关专业的读者参考。
本书同时用函数式方法和传统方法介绍了主要的基本算法和数据结构,数据结构部分包括二叉树、红黑树、AVL树、Trie、Patricia、后缀树、B树、二叉堆、二项式堆、斐波那契堆、Pairing堆、队列、序列等;基本算法部分包括各种排序算法、序列搜索算法,字符串匹配算法(KMP等),深度优先、广度有限搜索算法、贪心算法以及动态规划。