《模式识别》阐明了模式识别学科的科学意义与战略价值,总结了模式识别学科的发展历史及其研究规律,梳理了模式识别学科在基础理论、计算机视觉、语音语言信息处理、模式识别应用技术等方面的发展现状,分析了模式识别学科中尚未完全解决的关键科学问题,确定了面向学科前沿的发展方向和研究重点,指出了模式识别技术创新的新挑战、新使命与新机遇,提出了模式识别学科发展的保障措施与政策建议。《模式识别》旨在为模式识别学科的健康稳定发展奠定坚实的科学基础,促进模式识别在解决国计民生重大需求方面做出应有的贡献。
知识图谱已被广泛应用于智能信息搜索、自动问答、决策分析等领域。本书以构建领域多层次知识体系支撑智能应用为目标,系统地介绍实体关系图谱、事理图谱和业务主题图谱构建过程中涉及的关键技术,如知识抽取、知识融合、知识存储、事件和场景抽取、事件模式库构建、事理规则挖掘、层次主题挖掘、动态主题挖掘、对象属性挖掘、主题要素关联挖掘等。此外,本书还提供丰富的案例,展现如何利用知识图谱实现领域智能应用。 本书内容对于知识图谱研究和领域应用具有的参考意义,既适合专业人士了解知识图谱和深度学习前沿热点,又适合在相关领域从事知识图谱应用开发的人员学习,还可以作为高等院校人工智能专业师生的参考教材。
本书是升级版,不仅包含机器学习的基本概念,以及如何利用TensorFlow库快速构建强大的机器学习模型,还涵盖了前沿的神经网络技术,如深度语音分类器、面部识别和CIFAR-10自动编码。另外,本书新增了如何将代码更新到TensorFlow 2.0,以及在Docker容器中运行代码所需要的技术。
本书展现了智能世界中通信网络自动化、智能化的愿景,阐述了华为自动驾驶网络的发展历程、应用场景、基础理论、参考架构及相关的关键技术。本书主要介绍自动驾驶网络的顶层架构、分层架构(包括自智网络引擎、网图、AI Native网元)、关键特征(包括分布式AI、内生安全)等的架构设计,以及网络可信任AI、网络分布式AI、网络数字孪生、网络仿真、网络知识和专家经验数字化、网络人机共生、网元内生智能、网络内生安全等关键技术。本书还介绍了产业组织、标准组织的标准全景和分级评估方法,并以华为自动驾驶网络解决方案为例,阐明如何推行实践。 本书可为通信网络自动化、智能化领域的专业人士,以及科研院所相关领域的研究者提供参考。