本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《有机化学反应机理解析》全书共分为十三章,主要内容包括:有机化合物的结构概述(*章),烷烃(第二章),烯烃(第三章),炔烃、多烯烃(第四章),单环芳烃(第五章),卤代烃(第六章),醇、酚、醚(第七章),醛、酮(第八章),羧酸及衍生物(第九章),含氮化合物(第十章),缩合反应(第十一章),重排反应(第十二章),在系统讲述各类有机反应机理之后,生动形象地对有机化学反应机理进行归一(第十三章),揭示有机化学反应机理的真谛。《有机化学反应机理解析》可作为高中生奥林匹克化学竞赛的参考指导书,也可供高等院校本科生学习有机化学时参考使用,还可作为中学化学教师的培训进修教材。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
《自然哲学之数学原理》是牛顿一生中重要的科学著作,也是经典力学的集大成之作。在牛顿之前,天体运动和地上运动是被分开来考虑的。伽利略提出了运动的相对性,运动的合成和自由落体的法则,笛卡尔讨论了惯性原理的动量守恒法则;开普勒提出了行星运动三定律。牛顿的主要工作是将天体和地上的运动研究成果统一起来,并从数学上给予适当的证明。《原理》给出了著名的牛顿运动三大定律以及引力和距离的平方反比关系,构建了一个完整的经典力学体系。全书是按照几何学的形式以一种公理化的体系写成的。在科学史和思想史上,《原理》一书都具有极其重要的位置。
本书收录了野外较常见的植物700种,主要包括有文献记载可食用的植物、据研究证实有毒的植物、常用于中药的植物等。每一种植物均配有突出植物识别特征的彩色图片,并对植物的别名、识别、分布、药用、食用、毒性等信息进行了简要的文字描述。本书内容按照野外观察植物的感官认识的层层深入进行编排,首先按照植物的大小、直立或匍匐、草本或木本、水生或陆生等进行大体分类,再根据叶的形态进一步分类。读者可以通过查阅本书中每一植物的特征性图片及植物特征文字描述对植物进一步鉴别。本书适合中医药学、植物学、农学、园林学等专业人员及植物爱好者参考阅读。
《天工开物》是世界上部关于农业和手工业生产的综合性著作,也是中国古代的一部综合性的科学技术著作,外国学者称它为 中国17世纪的工艺百科全书 。该书对中国古代的各项技术进行了系统的总结,构成了一个完整的科学技术体系。它收录了农业、手工业、工业 诸如机械、砖瓦、陶瓷、硫磺、烛、纸、兵器、火药、纺织、染色、制盐、采煤、榨油等生产技术。尤其是机械技术,在书中有非常详细的记述。 《天工开物》作者在书中强调人类要和自然相协调、人力要与自然力相配合。本书是中国科技史料中内容丰富的一部著作,反映了中国明代末年出现资本主义萌芽时期的生产力状况。
本书系《中国古代天文知识》丛书之一。中国是世界上产生天文学早的国家之一,也是早有历法的国家之一。在早期新石器时代的母系氏族社会时期,人们已经能够利用星体的位置辨别方向,判断时间,识别季节,因而积累了丰富的天文知识。全书用优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的天文历法知识知识简明扼要地传达给读者,以翔实客观的资料说明了古代天文历法是中华传统文化核心,它的影响一直延续到现代,可谓源远流长,在世界上是独一无二的。
德国气象学家、地球物理学家魏格纳在《海陆的起源》一书中系统论述了他所提出的大陆漂移说,阐述了漂移论的本质内容以及与地球冷缩说、陆桥说和大洋永存说的关系,从地球物理学、地质学、古生物学等学科方面对漂移论的合理性进行了论证,探讨了大陆漂移的可能性以及动力。本书内容在地质学界和地球物理学界引起了巨大轰动,之后拉开了地球科学革命的序幕。
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
本书系《中国古代天文知识丛书》之一。中国古代天文学家将星空划为三垣二十八宿共三十一个天区,对每一个天区的星座、星名及其功能都做了安排,但对今人而言,这些星座、星名显得佶屈聱牙,它们的功能更是难以理解。本书作者积数十年研究,以齐全的资料、缜密的思考,以十二月昏中星为线索,对全天肉眼能见的主要星座的位置、大小、形状及其功能做了系统介绍。本书是学界揭示中国星座文化内涵的部著作,含有独到的见解和深厚的学术底蕴,书中还结合星名引用了近百个神话故事,佐以几十幅插图,对中国古代星空、星名的含义和来历做了详细的分析,内容丰富,图文并茂,生动有趣,是一部帮助读者认识中国古代星空的很好的入门书,也能给天文学史研究者、历史研究者提供新的视角。
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
《海陆的起源》是大陆漂移说创始人阿尔弗雷德 魏格纳的经典论著,系统地阐述并论证了他在1912年提出的大陆漂移说。全书共分三个部分。*部分论述大陆漂移的基本内容,并把它同地球冷缩说、陆桥说和大洋永存说进行对比,指出了这些学说的缺点和问题,认为只有大陆漂移说才能解释全部事实。第二部分从地球物理学、地质学、古生物学、古气候学、大地测量学等方面论证大陆漂移说的合理性。第三部分为解释和结论,从地球的黏性、大洋底、硅铝圈、褶皱与断裂、大陆边缘的构造形态等方面,讨论了大陆漂移的可能性以及漂移的动力。此书一问世,即被译成多种文字出版,引起全世界地质学界、地球物理学界的重视。
生活离不开数学。本书通过日常生活中的丰富案例,介绍了如何用数学思维,特别是运用贝叶斯定理来分析和解决看似简单但内涵深刻的生活问题。例如,《两小儿辩日》的逻辑错误,《卖拐》中使用的套路,成功学、阴谋论、星座学为什么都不靠谱,如何科学地扑点球,余则成是如何破解录音带危机的,做空英镑的数学原理,等等。这些深入浅出、妙趣横生的案例,可以帮助我们穿透事物的表象,洞察事物的真相。通过本书,我们还能认识到,统计数据是常识的基础,并在此之上建立正确的世界观,养成批判性思维和成长型思维,不断迭代升级认知,从而客观而睿智地看世界、机智而高效地做决策。
本书是与高等教育出版社出版的,毛骏健主编《大学物理学》(第二版)配套的同步辅导及习题全解辅导书。本书共有18章,分别介绍质点运动学、动力学基本定律、刚体和流体、振动和波动、静电场、静电场中的导体和电介质、恒定磁场、变化 的电磁场、热力学基础、气体动理论、几何光学、波动光学、狭义相对论、广义相对论、量子物理、原子核物理、粒子物理简介、固体物理简介。本书按教材内容安排全书结构,各章均包括基本要求、知识点归纳、习题解答与分析三部分内容。全书按教材内容,针对各章节习题给出详细解答,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽,简明易懂。本书可作为高等院校学生学习 大学物理学 课程的辅导教材,也可作为考研人员复习备考的辅导教材,同时可供教师备课命题作为参考资料。
在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。 本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8道习题供读者练习提升。快来和古今中外的数学家、物理学家等历史上的超强大脑们,做一次穿越时空的亲密接触吧!本书适合作为小学中高年级学生和初中生的数学课外读物,也可供数学爱好者阅读。