本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。 本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8道习题供读者练习提升。快来和古今中外的数学家、物理学家等历史上的超强大脑们,做一次穿越时空的亲密接触吧!本书适合作为小学中高年级学生和初中生的数学课外读物,也可供数学爱好者阅读。
《怎样解题:数学思维的新方法》经久不衰的畅销书出自一位著名数学家的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了《怎样解题:数学思维的新方法》的甜头,他们在《怎样解题:数学思维的新方法》的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
你以为无解的方程组真的无解吗?维特根斯坦说: 数学是各式各样的证明技巧。 如何用数学重新求证我们的人生?小到电饭锅为什么不会糊底,筷子夹不起来豌豆怎么办;大到如何 好地与他人相处,如何选择自己的职业。这些看似与数学无关的问题其实都蕴含着深刻的数学思维。勤能补拙的大数定律、权衡利弊的稀疏概念、貌合神离的条件独立、精益求精的数值解法、体现中庸之道的 小二乘法 数学公式和算法背后的智慧帮助我们 好地看清这个世界,并在遇到问题时提供 科学的视角,帮助我们做出 好的决策。很多事情的 终结果是我们不能预见的,但是,这个结果发生的概率是我们可以靠努力提高的。《心中有数》教你像电脑的处理器一样,快速、深层地剖析事物的 利与弊 ,在接受不 的前提下,通过数学思维权衡多方的利益,找到 的解题点。人生其实就是一
《怎样解题:数学思维的新方法》这本经久不衰的畅销书出自一位 数学家 G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《怎样解题:数学思维的新方法》是靠前有名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。《怎样解题:数学思维的新方法》是他专门研究解题的思维过程后的结晶。《怎样解题:数学思维的新方法》的核心是他分解解题的思维过程得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
在《算术研究》的序言中,高斯便已明确指明了本书的研究范围:“数学中的整数部分,不包括分数和无理数”。《算术研究》的正文则分为七章。章讨论数的同余;第二章讨论一次同余方程;第三章讨论幂剩余并证明了费马小