比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析、拉普拉斯变换、勒让德变换、椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。
《矩阵分析与应用(第2版)(精装)》系统、全面地介绍矩阵分析的主要理论、具有代表性的方法及一些典型应用。全书共10章,内容包括矩阵代数基础、特殊矩阵、矩阵微分、梯度分析与化、奇异值分析、矩阵方程求解、特征分析、子空间分析与跟踪、投影分析、张量分析。前3章为全书的基础,组成矩阵代数;后7章介绍矩阵分析的主体内容及典型应用。为了方便读者对数学理论的理解以及培养应用矩阵分析进行创新应用的能力,本书始终贯穿一条主线物理问题“数学化”,数学结果“物理化”。与第1版相比,本书的篇幅有明显的删改和压缩,大量补充了近几年发展迅速的矩阵分析新理论、新方法及新应用。 《矩阵分析与应用(第2版)(精装)》为北京市高等教育精品教材重点立项项目,适合于需要矩阵知识比较多的理科和工科尤其是信息科学与技术(电子、通信、自
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
MATLAB是数值分析领域使用最广泛的语言之一。本书以实验教程的形式介绍如何使用MATLAB编程实现数值分析计算问题,内容涵盖数值分析的多个方面。 全书包括13章(分三个部分)和4个录。部分(章)讲述MATLAB语言程序设计基础。第二部分系统地介绍了符号计算在微积分和复变函数两门大学数学基础课程中的应用,以及线性方程组、非线性方程与化方法、特征值与特征向量、插值与函数逼近、估计方法和数据拟合、积分计算、常微分方程等数值方法;从实用角度考虑,在许多章节都给出了一些数值分析的应用范例。第三部分即最后两章单独介绍一些综合性较强的数学建模问题。本书着重强调数值分析的基本原理与编程思想,并强调计算可视化,尽可能地从多角度给出计算结果的图像表述。 本书适合作为大学理工科非数学类专业的本科生或研究生学习数值分析的
本书旨在以动力系统理论为基础,阐述时间序列分析的现代方法。这部修订版,增加了一些新的章节,对原版进行了大量的修订和扩充。从潜在的理论出发,到实际应用话题,并用众多领域收集来的大量经验数据解释这些实用话题。本书对研究时间变量信号的各个领域包括地球、生命科学科学家和工程人员都十分有用。目次:基本话题:导论;线性工具和一般考虑;相空间方法;确定论和可预测性;不稳定性:Lyapunov指数;自相似性:当决定论是弱的时候非线性方法的应用;非线性线性精选;高等话题:高等浸入式方法;混沌数据和噪音;更多有关不变量;模型和预测;非平稳信号;耦合和非线性系统综合;混沌控制。A:TISEAN程序应用;B:实验数据集合描述。读者对象:数学、生命科学、经济等众多实践应用领域的科研人员。
《吉米多维奇数学分析习题集题解5(第4版)》4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路;帮助读者逐步解决学习中的困难,为他们在学习过程中提供一个良师益友。这是本次修订的主要工作。根据当前的语言习惯,对《吉米多维奇数学分析习题集题解5(第4版)》的文字作了较多的润色,使其表述更加准确,更加简洁凝练。
《б.п.吉米多维奇数学分析习题集题解(6)(第4版)》自1979年出版发行以来,历经30多个春秋,一直不衰,深得读者厚爱。在郭大钧教授的帮助和指导下,对全书我不断地修订和补充,不断地修正错误,不断地替换更为简洁的解法和证明,力求《б.п.吉米多维奇数学分析习题集题解(6)(第4版)》一直保持其先进性、完整性和准确性,以求对读者的高度责任感。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉其为学习数学分析“不可替代”之图书。 全书4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,
《吉米多维奇数学分析习题集题解2(第4版)》4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路。
《矩阵分析与应用(第2版)(精装)》系统、全面地介绍矩阵分析的主要理论、具有代表性的方法及一些典型应用。全书共10章,内容包括矩阵代数基础、特殊矩阵、矩阵微分、梯度分析与化、奇异值分析、矩阵方程求解、特征分析、子空间分析与跟踪、投影分析、张量分析。前3章为全书的基础,组成矩阵代数;后7章介绍矩阵分析的主体内容及典型应用。为了方便读者对数学理论的理解以及培养应用矩阵分析进行创新应用的能力,本书始终贯穿一条主线物理问题“数学化”,数学结果“物理化”。与第1版相比,本书的篇幅有明显的删改和压缩,大量补充了近几年发展迅速的矩阵分析新理论、新方法及新应用。 《矩阵分析与应用(第2版)(精装)》为北京市高等教育精品教材重点立项项目,适合于需要矩阵知识比较多的理科和工科尤其是信息科学与技术(电子、通信、自
本书是与刘玉琏等编写的《数学分析讲义》(下册,第四版,高等教育出版社2003年出版)配套的学习辅导书。此次修汀埘原书版的编写框架没有改变,每个大节还是按照讲义体例,逐节对应编写。每节包括基本内容、学习要求、答疑辅导、补充例题和练习题解法提要五部分,每章末附有自我检测题,书末给出其解答。《数学分析讲义学习辅导书(第2版)(下册)》可作数学专业学生、中学教师、自学读者、函授学员学习数学分析的辅导书,也可作为数学分析习题课教学参考书和考研的参考书。
本书紧扣当前工业自动化领域的发展热点,理论联系实际,内容涉及原理介绍、技术分析和应用实例,对工业通信网络和系统集成做了全面的阐述。
《微积分学习辅导》是微积分学习辅导书。全书共11章,分别为函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、向量与空间解析几何初步、多元函数微分学、二重积分、微分方程与差分方程、无穷级数。每章分为本章知识结构图、内容精要、练习题与解答、自测题AB卷与答案和本章典型例题分析。张伟、汪赛、朱金艳、张倩、李晓飞编著的《微积分学习辅导》可作为学生学习微积分课程的同步学习辅导书,也可作为研究生考试轮复习用书,还可供教师和相关人员参考。