本书系统讲解偏微分方程及其定解问题的求解方法,通过大量实例讨论偏微分方程解的性质,特别强调傅里叶级数在求解边值问题中的作用。书中配有丰富的例题与习题,还采用“专题问题”较为系统地研究某个具体问题,补充和扩展了正文内容。 本书内容丰富、推导严密,包含大量物理背景,为理解和掌握偏微分方程提供了有效途径。本书可作为高等院校数学及相关专业学生的偏微分方程课程教材,同时也可作为工程技术人员、科技工作者的参考书。
本书是一本极具特色的实分析教材。内容包括LP空间、重排不等式、积分不等式、分布理论、Fourier分析、位势论和Sobolev空间等,还有专门的章节介绍变分法及特征值问题,其中涵盖了许多数学物理中的例子。阅读本书,读者只需要通常微积分的基础,但通过本书读者可以迅速地从基本的测度论进入广阔的分析世界,领略一些近年来新的研究成果。毫不夸张地说,掌握了本书知识,读者对数学分析的理解将会登上一个新台阶。
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
Except for minor modifications, this monograph represents the lecture notes of a course I gave at UCLA during the winter and spring quarters of 1991. My purpose in the course was to present the necessary background material and to show how ideas from the theory of Fourier integral operators can be useful for studying basic topics in classical analysis, such as oscillatory integrals and maximal functions. The link between the theory of Fourier integral operators and classical analysis is of course not new, since one of the early goals of microlocal analysis was to provide variable coefficient versions of the Fourier transform. However, the primary goal of this subject was to develop tools for the study of partial differential equations and, to some extent, only recently have many classical analysts realized its utility in their subject.
本书是一部现代数学名著。自20世纪70年代面世以来,一直受到西方学术界、教育界的广泛推崇,被许多知名大学指定为教材。相比于同类书籍,它的特点在于: 选取的论据更适子教学使用。 论证详尽,可读性更强。 习题丰富,覆盖各个方面、各级难度。 可根据教学需要选用不同章节。
Nonsmooth analysis refers to differential analysis in the absence of differentiability. It can be regarded as a subfield of that vast subject known as nonlinear analysis. While nonsmooth analysis has classical roots (we claim to have traced its lineage hack to Dini), it is only in the last decades that the subject has grown rapidly. To the point, in fact, that further development has sometimes appeared in danger of being stymied, due to the plethora of definitions and unclearly related theories.
《俄罗斯数学精品译丛:常微分方程》是Л·C·庞特里亚金院士根据他历年来在莫斯科大学数学力学系所用的讲义编成的一本教材,在内容安排上,与传统的教材有很大的不同,作者从常微分方程在现代科学技术方面的应用出发,对材料做了新的选择和安排,不仅讲述了纯数学的常微分方程理论,同时还讲述了有关的技术应用本身,全书共分六章,包括引论、常系数线性方程、变系数线性方程、存在性定理、稳定性、线性代数,其中,常系数线性方程一章几乎占《俄罗斯数学精品译丛:常微分方程》三分之一的篇幅,而线性代数一章是为理解《俄罗斯数学精品译丛:常微分方程》内容而列入的。
这是由数学大师、菲尔兹暨沃尔夫奖得主Hormander撰写的一部经典的数学著作。作者用统一的观点处理多复变的基本内容,包括单复变解析函数、多复变函数的基本性质、多复变函数在交换巴拿赫代数中的应用、e算子的存在性定理和L2方法、Stein流形、解析函数的局部性质以及Stein流形上的凝聚解析层等7章内容,最为精彩的是关于e算子的L2方法的介绍,其叙述方式至今依然被奉为范本。全书每章都有注记,介绍相关知识点的发展历史等。 本书可作为高等院校数学系研究生教材和相关研究人员的参考书。
由薛小平编著的《非线性分析》是一本非线性分析方面的基础理论教材,内容包括拓扑度理论及其应用、凸分析与最优化、单调算子理论、变分与临界点理论、分支理论简介本书重视问题背景,理论阐述简明易懂,内容精心选取,每章后配有适量习题,便于读者阅读和巩固。 《非线性分析》可用作数学类及相关专业研究生教材,也可供从事非线性问题研究的科技人员参考
AcarefullypreparedaccountofthebasicideasinFourieranalysisanditsapplicationstothestudyofpartialdifferentialequations.Theauthorsucceedstomakehisexpositionaccessibletoreaderswithalimitedbackground,forexample,thosenotacquaintedwiththeLebesgueintegral.Readersshouldbefamiliarwithcalculus,linearalgebra,andplexnumbers.Atthesametime,theauthorhasmanagedtoincludediscussionsofmoreadvancedtopicssuchastheGibbsphenomenon,distributions,Sturm-Liouvilletheory,Cesarosummabilityandmulti-dimensionalFourieranalysis,topicswhichoneusuallydoesnotfindinbooksatthislevel.Avarietyofworkedexamplesandexerciseswillhelpthereaderstoapplytheirnewlyacquiredknowledge.