《多元微积分(第3版)(英文版)》是全面,知识体系新颖的多变量微积分教程。旨在解决广大多变量微积分学者遇到的新老问题,内容包括:(部分)基础资料:向量;向量微分;多变量函数;链式法则和梯度;(第二部分)值,值和泰勒公式:值和值等。
本书讨论偏微分方程在工程技术科学与自然科学中的应用,讲授的内容是高级工程数学、自然科学范畴的数学方法中非常重要的部分。本书适合作为与傅里叶级数、正交函数和边值问题等相关的课程的教材,也可以作为学习格林函数、变换方法等的参考书,是一本非常好的应用数学入门书籍。 本书作者从事教学工作多年,积累了丰富的经验。本书注重应用、内容广泛、层次清晰,每章后均附有大量的习题,方便读者巩固所学到的知识。
《右端不连续微分方程理论与应用》由黄立宏、郭振远、王佳伏所著,较详细地介绍了右端不连续微分方程的基本概念,通过对外大量文献资料进行精心筛选与组织,系统地介绍了右端不连续微分方程的一些研究成果,其中很大一部分是作者的新近研究成果,另外,为了使《右端不连续微分方程理论与应用》内容自成体系,书中简要介绍了研究右端不连续微分方程的一些基本理论知识、方法和工具,以方便读者阅读、学习和开展有关的研究。《右端不连续微分方程理论与应用》适合数学、自动化、计算机、信息技术等专业的高年级本科生、研究生、教师和相关领域的科技工作者,特别是从事常微分方程、泛函微分方程、动力系统、自动控制、生物数学、流行病学、人工神经网络等理论与应用研究的人员阅读。
关于孤子(也称孤立子)理论中双线性方程的研究,国际上十分活跃,本书主要介绍处理双线性方程的技巧“直接方法”。作者结合自己多年的研究成果,细致深入地阐述了求解非线性偏微分方程的解的过程,“广田方法”的要点,以及如何用Pfaff式统一显式表示多孤子解,由此提出了孤子方程可以看成Pfaff式恒等式的新观点。全书共分4章。章详细地描述“直接方法”的要点,以及用“直接方法”求解偏微分方程解的过程。第2章引入需要使用的数学工具,特别是行列式和Pfaff式理论,通过实例,深入浅出地介绍这些方面所涉及的技巧。第3章从直接方法的角度,讨论孤立子方程的数学结构。第4章详细讨论双线性Backlund变换。本书可供高等院校和科研机构的数学、物理、力学、光学等高年级大学生、研究生和教师阅读,也可供从事非线性科学、理论物理、数学物理和工
本书利用调和分析的现代理论,特别是可微函数空间的各种实变刻画、三代C-Z奇异积分算子理论、Fourier限制型估计、Littlewood-Paley理论等应用到非线性偏微分方程的研究,主要内容涉及奇异积分算子在椭圆边值问题中的应用、抛物型方程的时空估计方法、Littlewood-Paley理论与不可压Navier-Stokes方程、Bourgain的Fourier截断方法与能量归纳法、Tao的I-方法、Keel一Tao的端点型Strichartz估计、驻相方法与振荡积分等在非线性Schrodinger方程与非线性波动方程中的应用,特别是在Bourgain空间的框架下研究了非线性Schrodinger方程与非线性波动方程的低正则性,同时也介绍了在共形变换或其他变换群下的不变量、Morawetz型估计、Tao-相互作用的Morawetz型估计及Morawetz估计的局部化技术。本书可供理工科数学系,应用数学系的高年级学生、研究生、教师以及相关的科学工作者阅读参考。