本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi最终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。 本书可作为高等学校力学、数学、物理学,以及工程专业高年级本科生和研究生的教学参考书,亦可供有关教师、力学工作者和科技人员参考。
从自然定律的基本方程出发,采用一些近似的模型、近似的方法导出第二性的针对具体问题的方程,应是物理学各课程和数学物理课程的基本训练之一。数学是一种严密的逻辑推理,用一些数学模型来模拟物理自然现象使得一些物理现象变得可以理解。模型当然要不断修正使之逼近实际情况。模型理论是物理实在的近似描写,是我们认识真理的重要工具之一。 人们已对数学物理方程做了广泛深入的研究,并出版了不少关于这方面的著作。这本入门书主要想根据各种定解问题及其有关解法来展开讨论。本书除了介绍数学物理方程的一般知识外,主要介绍方程的三种常用解法:分离变量法、积分变换法和格林函数法,还简明介绍了特征线法、平均值法、降维法和黎曼方法等一些其他求解方法。最后一章介绍一些实例,目的在于加强数学和物理的联系,为增强读者的应用
本书是关于微分方程和动力系统的导论性专题著作,内容包括微分方程解的存在性定理;解对初值和参数的连续依赖性和可微性定理;动力系统的基本概念、线性系统及其矩阵指数;非线性系统局部和整体理论、稳定性和分叉理论及其分析方法。 本书适用于高等工科院校理工科研究生、数学系、物理系、力学系、计算机系等高年级学生及有关科研工作者使用。
《多元微积分(第3版)(英文版)》是全面,知识体系新颖的多变量微积分教程。旨在解决广大多变量微积分学者遇到的新老问题,内容包括:(部分)基础资料:向量;向量微分;多变量函数;链式法则和梯度;(第二部分)值,值和泰勒公式:值和值等。
《偏微分方程(第1卷)》是一部两卷集的偏微分方程教材。多变量椭圆,抛物和双曲方程是研究的主要对象,解决了PDE和多变量方法之间的关系。卷中集中研究了流形上的积分和微分,泛函解析基础,映射的Brouwer度,广义解析函数和圆周同调这些议题,在这一卷中通过积分表示论解决偏微分方程问题,第二卷中讲述函数解析解法。书中各章的独立性较强,有偏微分方程基本知识的读者可以独立阅读各章。
《右端不连续微分方程理论与应用》由黄立宏、郭振远、王佳伏所著,较详细地介绍了右端不连续微分方程的基本概念,通过对外大量文献资料进行精心筛选与组织,系统地介绍了右端不连续微分方程的一些研究成果,其中很大一部分是作者的新近研究成果,另外,为了使《右端不连续微分方程理论与应用》内容自成体系,书中简要介绍了研究右端不连续微分方程的一些基本理论知识、方法和工具,以方便读者阅读、学习和开展有关的研究。 《右端不连续微分方程理论与应用》适合数学、自动化、计算机、信息技术等专业的高年级本科生、研究生、教师和相关领域的科技工作者,特别是从事常微分方程、泛函微分方程、动力系统、自动控制、生物数学、流行病学、人工神经网络等理论与应用研究的人员阅读。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental ponent of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.
本书主要介绍许多工程和科学研究领域中有关分数阶偏微分方程的数值方法及其理论分析的成果,这些内容大部分是作者及其合作者得到的研究成果。这些分数阶偏微分方程包括空间,时间,时间-空间分数阶扩散方程,分数阶对流-扩散方程,分数阶反应-扩散方程,反常次扩散方程,修正的反常次扩散方程,反常超扩散方程,分数阶Cable方程,也包括多项时间-空间分数阶偏微分方程和变分数阶偏微分方程。分数阶偏微分方程的数值方法及其理论分析包括有限差分方法,有限元方法,谱方法,有限体积方法,无网格方法。我们讨论了数值方法的稳定性和收敛性,给出了数值结果,同时我们也介绍分数阶偏微分方程的一些应用实例。
编写有中央广播电视大学的赵坚和顾静相老师参加,具体分工如下:第l章函数、极限和连续,第2章导数与微分,第4章不定积分与定积分由赵坚编写;第3章导数应用,第5章积分应用由顾静相编写;全书的编写工作由赵坚主持。《微积分初步》初稿完成之后由北京师范大学丁勇教授等进行审定,对《微积分初步》的编写提出了许多宝贵的意见,在此一并表示衷心的感谢。
本书是一部数学研究生的偏微分方程教程。其旨在让读者更好地了解偏微分方程的经典基础结果,为读者更深层次学习这方面的专著和教程提供现代理论观点。这是第二版,较版增加了不少练习,专门增加了一章讲述拟微分算子,增加了不少材料,内容更加丰富。书中的前五章讲述经典理论,如一阶方程,局部存在性定理,数学物理基础偏微分方程,适时地运用现代物理技巧解释长期研究的话题。三章专注于现代理论,索伯列夫空间,椭圆边界值问题和拟微分算子。
本书是(英文版)一本关于曲线和曲面微分几何的导论,介绍微分几何这两个方面的局部特性与整体特性。同传统的微分几何教材不同,本书更广泛地应用初等线性代数的知识,并把重点放在基本的几何论据上。 为取得概念与实际材料之间的适度平衡,本书还包含大量的例子,并合理安排习题,其中包含经典微分几何的某些实际题材。
李群和微分流形对于研究非线性微分方程的性质和求解有重要意义。本书系统论述李群和微分方程不变群的基本理论,还介绍了微分流形的基本知识。本书内容精练,叙述严谨,只要具有线性代数、微分方程和微分几何的基本知识就可阅读。书中每章后附有一定数量的习题,这有助于理解本书的内容。 读者对象:高等院校数学专业、应用数学专业和理论物理专业的研究生,数学系高年级的本科生。