本书是本科生的微积分教学用书,主要内容为:牛顿运动学基本定律(开篇),向量代数,天体力学简介,线性变换,微分形式和微分演算,隐函数反函数定理,重积分演算,曲线曲面积分,微积分基本定理,经典场论基本定理,爱因斯坦狭义相对论简介。本书特别注意数学与物理、力学等自然科学的内在联系和应用。作者在理念导引、内容选择、程度深浅、适用范围等方面都有相当周密的考虑。从我们重点大学的教学角度看,本书的难易程度与物理、力学和电类专业数学课的微积分相当,而思想内容则要深刻和生动些,因此适于用作这些专业本科生的教科书或学习参考书。
Theprincipalthemeofthisbookis“theexistenceanddifferentiabilityofthesolutionsofvariationalproblemsinvolvingmultipleintegrals.”Weshalldiscussthecorrespondingquestionsforsingleintegralsonlyverybrieflysincethesehavebeendiscussedadequatelyineveryotherbookonthecalculusofvariations.Moreover,applicationstoengineering,physics,etc.,arenotdiscussedatall;however,wedodiscussmathematicalapplicationstosuchsubjectsasthetheoryofharmonicintegralsandtheso-called“d-Neumann”problem(seeChapters7and8).SincetheplanofthebookisdescribedinSection1.2belowweshallmerelymakeafewobservationshere.
本书系统介绍偏微分方向的基本概念及其应用,主要内容包括热传导方程、分离变量法、傅里叶级数、施图姆一刘维尔特征值问题、偏微分方程的有限差分数值法、非齐次问题、定常问题的格式函数、无穷域问题、波动方程和热传导方程的格林函数、线性和拟线性波动方程的特征线法以及偏微分方程的拉普拉斯变换解法等。 本书注重应用、内容广泛、层次清晰,适合作为高等院校理工科非数字专业高年级本科生或研究生数学物理方程课程的教材或教学参考书,还可以作为数学专业同类课程的参考书。
本书论述了由线性常微分算式在空间L2上所生成的线性算子的谱理论,及其亏指数及判定、自伴延拓、谱染特点、谱分解等,有限区间情形给出Liouville、Sturm和泛函分析三种处理.无限区间情形,详细讨论了二阶Smrm-Liouville算子经典的Weyl理论、极限点、圆的判别、自伴延拓的谱分解与Titchmarsh按特征函数的展开。 本书可供高等院校数学系本科生、研究生、教师及科研人员阅读参考。
Theprincipalthemeofthisbookis“theexistenceanddifferentiabilityofthesolutionsofvariationalproblemsinvolvingmultipleintegrals.”Weshalldiscussthecorrespondingquestionsforsingleintegralsonlyverybrieflysincethesehavebeendiscussedadequatelyineveryotherbookonthecalculusofvariations.Moreover,applicationstoengineering,physics,etc.,arenotdiscussedatall;however,wedodiscussmathematicalapplicationstosuchsubjectsasthetheoryofharmonicintegralsandtheso-called“d-Neumann”problem(seeChapters7and8).SincetheplanofthebookisdescribedinSection1.2belowweshallmerelymakeafewobservationshere.
本书主要内容包括:Differential forms I、Differential forms II、Tensor products、Metrics、Yang-Mills connections、Linear connections、Curvature等。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental ponent of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.