全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及、省级骨干教师培训班参考使用。
这本书旨在让读者清晰明了地接触广义相对论,广义相对论的引入,从大爆炸到黑洞,这样很容易激起读者对物理学的浓厚兴趣。附录中提供了大量的数学材料来帮助读者理解正文,而且附录的很多部分本身也是独立完整的。 本书的结构,章主要介绍狭义相对论和基本张量代数,包含一个场论的简要概述。紧接着的两章引入流形和曲率,包含一些具有激发性的物理知识,但主要目标是建立数学框架。第四章引入广义相对论,并且给出一些择一性定理的讨论。紧接着的四章主要讨论广义相对论的主要用途:黑洞,扰动理论和引力波,以及宇宙学。这些章节都贯穿有试验性结论的讨论,使得这些理论的实用性马上显现出来。 本书很适合物理系高年级本科生、研究生以及对广
大部分人也许从未想过一个三维宇宙可能会具有的不同形状。但是,只要你想过这个问题,庞加莱猜想将会是关于这些形状最简单的叙述,并且你会期望它的正确性。提出问题总是要比解决问题容易,一百年来,没有人能指出这个猜想是对还是错。因为它的重要意义,克莱数学研究所在2000年将庞加莱猜想定为新千禧年的七道著名未决难题之一,并给问题的解答提供一百万美元的奖金。 2003年初,一位隐居的俄罗斯数学家格里高利?佩雷尔曼在互联网上张贴了三篇论文,声称证明了该猜想(以及更多的结果)。这位回避媒体的人以将答案张贴在互联网而不是发表于有正式审稿程序杂志的方式震撼了整个数学世界。他的结果经受住了数年、数个数学家小组的严格检验。 在长达七年的等待后,佩雷尔曼的文章终于被克莱研究所承认,获颁100万美元奖金。和菲尔兹奖
本书是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共轭结构理论,主要结果包括共轭对称性定理,上、下同调群的几何化定理,共轭元球面定理。在这些定理基础上,同调论和同伦论中许多重要定理与结果,如Poincare对偶,Lefschetz对偶,Kunh公式,上、下同调群,以及Hurewicz定理等的实质及直观意义变得更清楚了。 本书适合于数学、理论物理等相关专业的高年级大学生、研究生、教师及研究人员学习和参考。
《简明微积分发展史》以微积分思想的发展为主线,简要地阐述了从古至今微积分学的发展历程,描绘了博大精深的数学科学的一个脉络。《简明微积分发展史》在介绍了许多对微积分的产生与发展做出过重大贡献的数学家的同时,对他们的工作予以恰当地分析与评价。对近现代微积分发展史部分的论述是《简明微积分发展史》的重点。 《简明微积分发展史》论述客观,条理清晰,图文并茂,适合综合性大学,师范院校数学专业的学生,数学工作者以及数学爱好者阅读,阅读《简明微积分发展史》对学习,理解和掌握微积分将是非常有益的。
《无机化学学习指导》旨在指导学生理解和掌握无机化学的基础知识和基本原理,排疑解惑,灵活运用无机化学的基本规律,培养科学思维方法,提高分析归纳和强化解决问题的能力。全书共23章,前11章为无机化学基本原理,后12章为元素化学,最后还附有“归纳与小结示例”。各章含四部分:教学要求、要点解析、释疑与习题选解、自测练习(附参考答案)。 《无机化学学习指导》可作为师范院校和综合性院校本、专科学生学习无机化学或普通化学的教学参考书,对理工科化学化工专业学生、中学化学教师以及硕士研究生入学考试等都有重要的参考价值。