全书内容包括:套利定理、风险中性概率、用于金融领域的微积分、鞅、偏微分方程、Girsanov定理和Feyman-Kac公式,开头介绍了金融衍生工具知识。本书为略有金融知识背景或金融从业人员提供金融衍生工具定价所涉及的数学知识和数学方法,对数学原理和方法的介绍简明易懂,所举例子丰富。
本书讲述能量泛函正则化模型在图像恢复中的应用,主要内容包括图像恢复基本原理,能量泛函变分原理,有界变差函数原理,凸分析基本原理,能量泛函解的存在性、唯一性和稳定性基本原理,结构化牛顿算法在图像恢复正则化模型中的应用,Primal-Dual原理及其在图像恢复中的应用。
水文分析计算是水利工程规划设计的一个重要环节。水文事件(过程)一般具有多个方面的特征属性,现行的单变量分析方法无法全面地反映事件的真实特征。陈璐编著的《Copula函数理论在多变量水文分析计算中的应用研究》结合国家自然科学基金等课题,系统地介绍了Copula函数理论方法,探讨了Copula函数在多变量水文分析中的应用,研究内容涉及分期设计洪水、洪水遭遇、干旱风险分析以及河流相关性分析等。《Copula函数理论在多变量水文分析计算中的应用研究》主要研究成果和创新点如下:(1)综述了单变量水文频率分析方法,包括分期设计洪水、洪水遭遇以及干旱风险分析等的研究进展;概述了多变量水文分析计算的发展历程和Copula函数在水文分析计算中的应用。(2)系统地介绍了Copula函数的理论和方法,着重介绍ArchimedeanCoptlla和椭圆Copula函数、多维Copula
本书首先回顾了量子力学的一些基本概念,并引入量子力学中所谓路径积分的概念,然后阐明如何在场论中引入相应的路径积分。在随后的各章中,简单明了给出路径积分方法在场论中几种最基本的应用。本书是进一步深入学习和研究路径积分方法不可或缺的参考书,适用于从事高能物理、凝聚态物理、数学物理等研究领域的研究人员和研究生。