本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中最近兴起的粒子群算法处理多目标问题的理论方法与应用示例。 本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性
本书系统地介绍了粗糙集理论的基本内容与方法,力图概括国内外*成果。主要内容有:粗糙集的基本概念,粗糙计算方法,粗糙集的代数性质与粗糙逻辑,粗糙集的各种推广模型,粗糙集与其他处理不确定或不精确问题理论的联系以及不完备信息系统下的粗糙集方法。 本书可作为计算机科学、应用数学、自动控制、信息科学和管理工程等专业的高年级学生及研究生的教材,也可作为研究粗糙集理论与方法的科技人员的参考书。
对于历届诺贝尔经济学奖得主,本书首先说明他们的获奖工作,并给出了他们的照片和生平简介;然后介绍了他们的获奖工作与数学之间的联系;介绍一个或几个相关的数学逻辑。 读者对象:数学、经济管理以及财经等的大学生,也可供相关的科研和教学人员参考,
本书着重介绍了与现代计算有关的数值分析的基本方法,强调基本概念、理论和应用,特别是数值方法在计算机上的实现。以期学生在使用本后能够在计算机上进行有关的科学与工程计算。本书理论叙述严谨、精炼,概念交待明确,描述清晰,系统性较强,可供各校《数值分析》课程采用。 全书包括:插值和逼近,数值积分和微分,解线性代数方程的直接和迭代方法,解非线性方程和方程组的数值方法,特征值问题和常微分方程初值问题的计算方法。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为本科计算数学专业,也可作为其他理工学科硕士、博士研究生的或参考书。
本书是一部为物理学专业的高年级本科生和研究生设计的,学习重整化群和场论教程,也是学习凝聚态和粒子物理的资料。本书简明扼要,开门见山、直奔主题自由能量的环膨胀,即的背景场理论。这一很有力的方法,尤其是在处理对称和统计力学的时候尤为重要。专著自由场的讲述,避免大篇幅赘述有关场理论技巧的发展,接着全面呈现重整化的必需性。 目次:一些结果;有序参数、对称性破缺性导论;Ising模型下的物理情形例子;Ising模型的一些结果;高温和低温扩张;相变有关的几何问题;临界行为的现象学描述;平均场理论;平均场之外;重整化群导论;φ4理论用的重整化群;重整化理论;Goldstone模;大n。 读者对象:物理专业的高年级本科生、研究生,以及对重整化、场论、凝聚态物理和粒子物理感兴趣的读者。