《黎曼几何(英文版)》是一部经典的《黎曼几何》教材,自1926年出版以来,广受欢迎,于1950,1952.,1960,1964,1993年重印出版,并于1997年再次重印出版且列入《princetonlandmarksinmethamatics》。本书作者简明的介绍了黎曼几何的关键概念,从张量分析开始,包括了黎曼曲率张量,christoffel符号和ricci张量,自此引入了度量的概念,并由此展开了测地线,平行位移,bianchi恒等式的讨论。书中内容还涉及正交标形,子空间的几何,平坦空间的子空间和运动群。模拟计算贯穿于书的始终。目次:张量分析;度量引入;正交标形;子空间的几何;平坦空间的子空间;运动群。读者对象:本书适用于数学和理论物理专业的学生,老师和专业人士。
微局部分析自20世纪60年代中创立以来在推动偏微分方程理论的发展上已有长足的进步。迄至70年代末已成定型,人称“70年代算法”。其后更向精密化发展;同时由线性领域向非线性领域发展。这显然是90年代大有希望的研究方向。本书的目的是就两个专门问题:非线性奇性分析以及次椭圆问题介绍这些发展,其中不少内容是作者本人的研究成果。本书的结构大体上是:第二、三、四章主题是非线性微局部分析,包括J.-M.Bony所创立的仿微分算子理论以及非线性奇性分析。后三章包括了非齐性Sobolev空间上的拟微分算子理论和它在次椭圆问题上的应用,以及高次微局部的理论等等。以上两部分都是当前正在活跃发展的研究领域。为了使读者能明了这些进展的由来并方便读者阅读,在章中系统而又概括地介绍了经典的微局部分析。
本书内容共分两部分,部分带有丰富的插图和问题,题材较具趣味性,属于科普性质,目的是让读者提高学习数学的兴趣和开阔眼界,拓展深度,但是其中也安排了量较有难度和深度的课题和问题,可供读者日后提高之用。具有初中至大学低年级水平的读者都可在其中找到适合自己的内容。本书第二部分虽然也包括了一些趣味性的内容,但专题性较强,集中介绍了和斐波那契数有关的内容和问题,其中大部分内容具有高中程度即可理解,但最后两节需要读者具有初等数论的知识,包括二次剩余的理论才能理解。本书适合具有初中至大学低年级数学程度的学生、数学爱好者、中学和大学教师及有关的科研工作者阅读和参考。