本书以中考数学难题和外初中数学竞赛为背景,按照初中数学课程的进度分专题编写,在内容的安排上力求与课堂教学同步,在夯实基础的同时,通过新颖、有趣的数学问题,构建通往中考数学和初中数学竞赛的捷径;在有利于学生把初中数学教材的知识巩固深化的同时,恰到好处地为学生拓宽有关中考和竞赛数学的知识;以中考数学和初中数学竞赛中的热点、难点问题为载体,介绍竞赛数学中令人耳目一新的解题方法与技巧,激发学生创新与发现的灵感,开发智力,提高水平去参加中考数学和初中数学竞赛.本书可供初中数学资优生,准备参加初中数学竞赛及中考的学生,中学数学教师、数学爱好者、高等师范院校数学教育专业大学生、研究生及数学教师参考.
首先,这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。 其次,这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(如庞
本书摒弃摄动法有限元,集中讨论了可靠度有限元,内容包括非正态变量的变量置换,拉丁方抽样蒙特卡罗法,FORM和SORM,场离散,静、动力有限元反应梯度计算,退化结构的时变可靠度,结构系统可靠度,以及作者开发的有限元软件等。 书中反映了外可靠度有限元的进展,其中包括了作者的研究成果,如线性回归离散场、非正态变量置换引起可靠度的附加误差、点拟和及曲面拟合SORM算法、退化结构的时变可靠度计算以及用预后验决策分析优化桥梁维修制度。 本书的读者对象为结构可靠度领域的工程师、教师和研究生。
《浙大优学·直达高中名校:中考数学是这样考好的》都有一个好听的名字,一针见血指明要解决的问题;读此书犹如作者在身边,手把手辅导;每《浙大优学·直达高中名校:中考数学是这样考好的》均由全国一线、有培训经验的老师编写;读此书不仅能提高成绩,更能提升学习力。
本书具体的内容是所谓的Kac-Moody(卡茨-穆迪)代数,它是近代代数中一个极为重要的分支,在理论物理学、数学物理学及许多数学领域中都有重要的应用,本书详细讨论了无穷维李代数中很好重要的Kac-Moody代数的基本理论及其表示理论,全面介绍了Kac-Moody代数在数学和物理学中的应用,书中定理的陈述和证明简明扼要,各章有大量习题以及提示。