随着小学新课程改革的不断深入,学习理念和学习方法也随之发生变化,教师、学生以及家长对学习辅导书提出了新的要求。 很多学生从小就非常喜欢数学,并在数学方面得到了良好的教育,并有较好的发展前景。但也有一些学生投入了大量的精力,习题做了一大撂,但成绩仍不理想,甚至感到学习数学是一件很烦恼的事情,不喜欢数学。究其原因,就是没有找到学数学的窍门,没有掌握学数学的规律,没有发现适合自己的学习方法,自然也就感觉不到学数学的快乐。
本书内容共分两部分,部分带有丰富的插图和问题,题材较具趣味性,属于科普性质,目的是让读者提高学习数学的兴趣和开阔眼界,拓展深度,但是其中也安排了量较有难度和深度的课题和问题,可供读者日后提高之用。具有初中至大学低年级水平的读者都可在其中找到适合自己的内容。本书第二部分虽然也包括了一些趣味性的内容,但专题性较强,集中介绍了和斐波那契数有关的内容和问题,其中大部分内容具有高中程度即可理解,但最后两节需要读者具有初等数论的知识,包括二次剩余的理论才能理解。本书适合具有初中至大学低年级数学程度的学生、数学爱好者、中学和大学教师及有关的科研工作者阅读和参考。
微局部分析自20世纪60年代中创立以来在推动偏微分方程理论的发展上已有长足的进步。迄至70年代末已成定型,人称“70年代算法”。其后更向精密化发展;同时由线性领域向非线性领域发展。这显然是90年代大有希望的研究方向。本书的目的是就两个专门问题:非线性奇性分析以及次椭圆问题介绍这些发展,其中不少内容是作者本人的研究成果。本书的结构大体上是:第二、三、四章主题是非线性微局部分析,包括J.-M.Bony所创立的仿微分算子理论以及非线性奇性分析。后三章包括了非齐性Sobolev空间上的拟微分算子理论和它在次椭圆问题上的应用,以及高次微局部的理论等等。以上两部分都是当前正在活跃发展的研究领域。为了使读者能明了这些进展的由来并方便读者阅读,在章中系统而又概括地介绍了经典的微局部分析。