贴近教材,贴近学生的实际.有利于促进初中活动课程的开展,满足学有余力的学生学习数学的愿望,激发学生学习数学的兴趣,培养学生应用数学的能力和创新的意识,发展他们的数学能力.
本书提供了将公式和数据转换为几何形式的指令,为学生提供了一系列精心设计的问题,旨在阐明函数和图像的功能及属性。首先采用简单的函数来分析构造图的基本方法,然后介绍线性函数、二次三项式、线性函数、幂函数和有理函数等更复杂问题的解决方法。
本书主要讲解初中几何辅助线的添加方法和技巧,主要内容包括中点模型的构造,角平分模型的构造,弦图的构造及应用、图形的三大变换以及梯形、圆的辅助线添加,每章包含中考分析、知识讲解、方法技巧、经典例题、试题,可以达到学而练的目的,从而使中考几何不再可怕。
本书共两部分。第 1 部分介绍平面几何的基础知识,如概念、公理、定理等,并配有大量练习题,以便读者巩固和拓展所学知识。第 2 部分是习题:习题 1 为基本题,是第 1 部分的基础知识的有效补充,同时为解决后面的难题作铺垫;习题 2 通过一些重要的定理证明介绍经典的解题方法;习题 3 主要训练思维;习题 4 则是需要更多思考的竞赛题 . 本书内容充实、精练,语言简洁,旨在夯实基础,拓宽视野,培养兴趣,提高能力,能满足多种层次读者的需求,适合中学生研习,也可供中学数学教师参考。
坐标方法 是一种将几何图像转换为公式的方法,一种通过数字和字母来描述图像的方法,表示常量和变量。本书探讨了通过坐标方法,几何概念到数字语言的转换,以便定义一个点在空间中的位置。 共分两个部分,*部分介绍直线上点的坐标、平面中点的坐标以及空间中点的坐标,第二部分讨论坐标方法的有趣应用。为了读者能更有效地使用本书,作者在书中边缘留有一系列有用的 道路标志 ,提醒读者需要特别注意的内容,以引导读者进行更深入的探究。
本书引自美国Springer出版社,是 盖尔范特初中数学新思维 系列丛书中的一本。本书以提出问题、给出所有解题方法、讲解解题思路的顺序,将学生在初中阶段涉及的三角函数问题贯穿起来,让学生在理解概念的同时灵活应用。
本书中的 355 道题全部是新编的,并按知识点分类 . 通过对这些题的实践训练,可以强化对平面几何基础知识的掌握,激发兴趣,启迪思维,提高解题能力 . 本书适合数学水平中上的学生使用,供参加全国高中数学联赛之用,也可作为备战中考、理科实验班招生考试的学习资料 .
《孙维刚初中数学(第二版)》是著名的数学教育家孙维刚老师的著作,是孙老师三轮实验班的教材。本书立足于对基础知识的分析把握,以及对方法和思想的指导,各章由学习指导和例题两部分组成,在详述概念后,引申概念外围的规律、方法以及解题思考规律。书中提出,学好数学必须站在系统的角度看问题,力求一题多解、多解归一(结论一个)、多题归一(善于总结),善于用 动 的观点思考问题(做到 风物长宜放眼量 ),这对开启学生的数学智慧,掌握科学的学习方法、思维规律,提高学习效率有很大的帮助。 本书可作为中学教师和学生的辅导用书或自学教材。
本书是面向中学生的一本简明的代数辅导书,高屋建瓴地总结出了初中代数中的重要知识点,对初中代数的定理、概念等结合例题进行了详细的讲解,并提炼、编制了一些特别能启发思维的练习题。通过这些练习,读者可在初中代数的表达、关键步骤以及书面表达的完整性等方面有所收获和得到启发。本书适合中学生学习,也可供中学数学教师参考。
本书是一本为中国留学生和相关的教学工作者精心打造的英汉双语数学专业工具书。全书分为三部分: 第1部分代数初步、代数1、代数2(第1~11章);第2部分几何(第12~21章);第3部分微积分初步(第22~34章)。本书是一本综合的数学知识宝库,按照美国知识体系和教科书章节顺序出词,围绕知识体系展开知识点的介绍,每个数学词条都配有相应的英汉词义、音标、定义、性质、证明、数学符号、例题与答案、造句与写作、竞赛真题与标准化真题,每章都有小结,让读者在查阅词条时能够各取所需。(极其简单的英语部分汉语翻译略去) 本书旨在帮助读者掌握地道的英文数学词汇和标准的惯用表达方式,提升数学英文的综合使用能力,希望借由本书为读者打开体验美国数学教育精髓的窗口,培养读者的数学探索精神和多元的数学理念,即不厌其烦地追求一题多解以拓
.
用简单漫画讲让学生们认为抽象难懂的数学课。 必学知识与教科书同步,补充内容更宽泛,突破教科书局限。可作为教科书的参考书籍。将数学知识和幽默漫画完美结合,通过数学博士爷爷和孙女之间令人捧腹的日常生活互动,用数学解决生活里的小难题,寓教于乐,让孩子们充分感受到数学的魅力!书中内容包括数的种类(自然数、实数、有理数等)、分解质因数、十进制、四则运算、平方根、集合、方程式、函数、概率统计等,让小读者在轻松、活泼的氛围中学懂数学知识。本套书*的特点,在于打破了传统辅导书以年级分类的方式,围绕初中教材的单元,同时联系小学教材的内容进行讲解。只要对小学数学的内容有基本的掌握,无论现在处于哪个年级,都能相对轻松地掌握初中、高中才会涉及的基础数学概念。