上册:知识梳理。带你全面掌握高中生物竞赛知识点 下册:例题解析、针对训练。每章20例赛题解析,3100多题针对训练,满足参加高中生物竞赛学生的训练需求
暂无内容简介。。。。。。
《历届全国初中数学竞赛经典试题详解》博采了众家之长,又敢于标新立异。作者精选了历届全国、省、市初中数学竞赛试题,远远突破了1000道题,所选的每道题都有详细解答,这无疑提升了它的使用价值和性,这也是本书有别于其他同类书而独具的特色。三书的三段小插曲,即“解题策略大盘点(1)(2)(3)”将初中数学常用的解题策略的技巧,通过对典型例题精辟的分析和详尽的讲解,系统地介绍给中学生读者,深入浅出,通俗易懂,同学们乐于接受也容易掌握,这是本书的又一大特色。
《高中数学竞赛解题方法》编写的个目的就是向广大高中学生传授一些中学阶段必须掌握的数学方法。第二个目的就是为一线教师和竞赛辅导的教练提供丰富的教学资源。
中国化学界的泰斗,原北京大学副校长傅鹰先生有句名言:实验是法庭。化学是一门以实验为基础的科学,化学中的概念、定律和理论源于实验,又为实验所检验和发展。作为中学生,参与到化学奥林匹克竞赛中来,也离不开化学实验。通过化学实验,学生不仅可以获得大量的直接的化学感性认识,而且可以培养深人细致的观察能力,以及对实验现象进行科学分析和归纳的能力,使感性认识上升到理性认识,这是一种重要的科学思维方法训练。通过化学实验,还可以培养独立工作的能力、严谨踏实的学风、实事求是的科学素养和勇于探索的创新精神。化学实验在全面提高学生素质、培养科学后继人才方面具有十分重要的作用。 现在各种奥赛书籍琳琅满目,但适合参加中学化学奥林匹克竞赛冬令营选手的书甚少。本书主要针对参加全国冬令营的选手需要掌握的实
本书是数学竞赛与数学文化方面的系列专业文集。本文集旨在为从事数学竞赛的师生与从事数学文化研究与传播的专业人员提供深度阅读,措建表达平台,促进海内外华人同业人士的学术交流与台作,推动数学的普及与进步。
图形问题对小学生来说是非常直观和有趣的,然而又是数学中的一个难点.本书介绍了小学数学竞赛中常见的图形问题的基本知识、解题方法和技巧,通过对一些有趣的、新颖别致的例题和习题的讲解,拓宽学生的视野,培养学生灵活运用知识的能力,提高思考问题和解决问题的能力。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
中国科协青少年科技中心编著的《第二十七届全国青少年科技创新大赛获奖作品集》汇集了获得第二十七届全国青少年科技创新大赛创新成果竞赛项目一等奖、优秀科技实践活动一等奖(包括“十佳”科技实践活动),以及优秀科技辅导员创新项目一等奖共138个项目的研究和活动情况介绍。创新成果竞赛项目的介绍主要侧重于研究目的、基本思路、制作过程、最终成果等;优秀科技实践活动的介绍侧重于活动背景、活动目的、活动内容、活动形式、活动收获等;优秀科技辅导员创新项目侧重介绍项目背景、方法与原理、项目过程、最终成果、创新点等。录中收录了获得本届大赛创新成果竞赛项目、优秀科技实践活动、科技辅导员创新项目二等奖、三等奖的获奖名单。随书中收录了获得本届大赛少年儿童科学幻想绘画一等奖和二等奖的全部作品。本作品集可供广大青
本书对数学奥林匹克的历史和发展,奥林匹克数学及其牲,奥林匹克数学与数学教育,奥林匹克数学的内容和方法,以及数学奥林匹克命题理论和数学奥林匹克解题理论等方面进行了系统研究和探讨,全书内容丰富,观点鲜明。 本书可供高等师范数学系师生、从事数学奥林匹克教学和研究的人员以逐鹿中原学数学教师和数学爱好者阅读。
数论,是一个重要的数学分支,肇源极古。 数学竞赛中常常出现初等数论问题。这类问题,利用极少的知识,生出无穷的变化,千姿百态,灵活多样。 本书通过数学竞赛问题介绍初等数论的一些基本概念和方法。希望读者阅读此书时,带着纸和笔,在看例题的解答之前,先试着刍己动手,这样才能真正体味出解题的窍门。
我国组队参加国际学科奥林匹克竞赛,是在广泛开展全国性学科竞赛系列活动的基础上开始的。多年的实践证明,学科竞赛对帮助青少年树立科学、爱科学、用科学的良好风尚发挥了积极的作用,并已成为青少年广泛参与的普及性学科竞赛活动。 学科竞赛旨在培养学生的学科兴趣,拓宽学生的知识面,是学有余力的学生的重要的课余活动。 学科竞赛方面的读物很多,多数是解题,使同学们掉进题海中不能自拔、不能举一反三。 本丛书作为竞赛教材编写,既注意到知识覆盖面,又强调了重点、难点;既注意到基本概念的阐述,又强调了应用,提高解题能力;既注意到知识性,又强调了趣味情。这样使读者怀着好奇心去阅读本丛书,从阅读中去理解基本概念,再从理解中去应用基本概念,达到增强解题能力、举一反三的效果。
教程系列每册都以专题的形式编写,每章的主要栏目有:寒点突破、范例解密、超级训练。三至六年级卷的“超级训练”栏目中,题目根据难易程度分为A组,B组、A级较易,B组较难,供学生、老师和家长选择使用。全书后附有超级训练题目的详解。 该丛书以外小学数学奥林匹克为背景,以《全日制义务教育数学课程标准》的新理念新要求为准绳,注重数学基础知识的巩固提高和数学思想方法的渗透,凸现科学精神和人文精神的融合。加强对学生学习兴趣、创新精神、实践能力、应用意识和分析、解决问题能力的培养。
覆盖1991~2002年国际数学奥赛竞赛题。精心分类,优化解题,立足前沿,打造竞赛工具书。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
本书通过大量的近十年来外数学竞赛试题和部分平面几何历史名题,较为系统地介绍了怎样利用几何变换(包括平移变换、中心反射变换、旋转变换、轴反射变换、位似变换、位似旋转变换、位似轴反射变换、反演变换)的思想方法巧妙地处理传统的平面几何问题,以减轻辅助线的思维负担。全书深入浅出,通俗易懂,每一节都配备了数量的习题(基本上由近十年的些竞赛试题构成),书末有习题解答。 本书是准备参加数学竞赛的中学生在平面几何方面的一体理想的课外读物,更会使平面几何爱好者爱不释手。
本书由担任2000~2003年国际物理奥赛国家集训队教练的6位复旦大学物理系教授集体编写,在培训与选拔国际物理奥赛国家集训队队员所用习题和选拔题的基础上整理修订而成。编写时又根据当前情况进行了适当的删节和补充。题目内容覆盖普通物理学的各个方面,题目深度富含多种层次,适合各种类型读者的需要。作者根据每个题目的具体情况,提出完整的解题思路,并作了详简适当的解答。某些题目在解答之后,还就该题的解题方法、题目背景、物理意义等作出点评,以拓宽读者的思路。 本书可供有志于参加国内和国际物理竞赛的学生参考,对培训和选拔各类物理竞赛队员的教师有所帮助,对于准备参加物理类研究生考试的读者同样具有参考价值。
暂无内容简介。。。。。。