为推广数据中心的建设技术,贯彻执行国家标准,本书总结了数据中心供配电系统、空调系统、机柜系统和布线系统的理论和实践经验,阐述了数据中心用电设备对于电能的基本要求,介绍了数据中心环境要求、设备布局、空调系统规划、未来的发展趋势以及数据中心空调系统的评估和优化。
《数据质量管理基础》正文由7章组成(重点考虑关系型结构化数据):章简介数据质量问题;第2章展开讨论条件依赖理论;第3章阐述发现条件依赖,以及基于发现条件依赖检测数据不一致、修复数据的实践技术;第4章介绍依赖匹配作为数据去重的匹配规则;第5章重温经典的两个信息完整性假定,即封闭世界假定和开放世界假定,并提出和研究相对信息完整性理论;第6章进行数据时效性建模,以便时间戳缺失情况下,在数据库中进行实体值辨别并基于此返回查询结果;第7章探索数据质量问题之间的交互作用。
AuthorizedtranslationfromtheEnglishlanguageedition,entitledBeyondBigData:UsingSocialMDMtoDriveDeepCustomerInsight,0 13 350980 XbyMartinOberhofer,publishedbyPearsonEducation,Inc,publishingasIBM,copyright?i2014.AllRightsReserved.Nopartofthiookmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying,recordingorbyanyinformationstorageretrievalsystem,withoutpermissionfromPearsoneducation,Inc.CHINESESIMPLIFIEDlanguageeditionpublishedbyTSINGHUAUNIVERSITYPRESSCopyright?i2016.
本书以检验检测机构日常检验检测工作为主,通过对检测机构检测方法的确认评价、检测过程的数据处理、检测结果的质量控制过程中所涉及的数学方法的具体计算,略去数学公式的推导和论证,详细介绍了检测数据的有效位数合理性控制、可疑检测数据的取舍、多次平行测定结果的评定、两组检验检测数据平均值的评定、多组检测数据平均值的评定、两组及多组检测数据精度的评定、检验检测机构之间检测数据的单因素结果评定、两因素多水平的方差检测、检测标准曲线、检测质量控制图的绘制、各分析步骤的误差对分析结果的影响、标准检测方法的确认(验证)、检验检测机构自制分析方法、统计方法在不确定度与风险评估中的应用。本书可供检验检测机构的技术人员,食品、农产品等监管人员参考使用,也可供大专院校作使用。
本书重点介绍数据质量管理与安全管理的理论及应用。首先通过数据管理现况和问题的分析,提出数据质量管理的步必须是将各种来源的数据标准化,具有统一的数据格式和规则。书稿中强调了提高数据质量不仅可提高信息系统的质量,还可提高经营活动的质量。需要制定质量管理计划或执行具体的质量管理活动。定义了数据质量的准确性、一致性、可用性、可达性、及时性、安全性这6个标准以及对应的管理流程,划分了5个能力成熟度的等级,界定了从管理者到执行者等各个质量管理活动和责任。提出多项数据质量管理主要技术和各国实用案例,还进一步在Orange数据库中实践了数据质量诊断流程。书稿后半部针对日益增长的数据库安全性的需求,提出了安全管理系统构建、访问控制,数据伪装等具体可行的技术手段,最后还将数据安全技术推广到大数据的应用场景
本书是作者及所在课题组近年来关于数据驱动全局优化方法研究成果的总结。先介绍数据驱动优化方法的发展现状、关键技术及常用的测试函数,然后介绍基于空间缩减的全局优化方法、基于混合代理模型的全局优化方法、基于多代理模型全局优化方法、代理模型辅助的约束全局优化方法及离散全局优化方法、代理模型辅助的高维全局优化方法。本书介绍的数据驱动全局优化方法优化效率高,新颖性和先进性强,可广泛用于解决工程优化问题。
财务管理对所有企业而言都具有重要战略意义。一个能全盘掌握企业信息,并能清晰地提供决策所需资料的数据处理系统将是企业提升财务管理系统的核心平台。Oracle公司是全球的信息管理软件及服务供应商,Oracle数据库已成为世界上使用最广泛的数据库系统之一。在市场竞争日趋激烈的今天,该系统可以为企业培养迅捷的反应能力和整合资源提供极大的便利。本书以版本的Oracle11iE BusinessSuit为对象,全面系统地介绍了Oracle11i财务系统的操作使用流程和方法。从教学内容上来看,本书涵盖了财务模块的所有构成部分,表述了会计核算和财务分析的主要流程,体系完整;从教学方法上看,本书提供了丰富的示例和技巧说明,并辅以明晰的图示,读者可以轻松地在实践中掌握相关技巧。本书的目的是力争让每一位希望实现企业财务管理软件化、现代化、智能化,并对Ora
本书是在作者多年从事数据挖掘行业实践和相关科学研究的基础上编写而成,书中包括数据挖据理论研究及实际应用的现状分析、研究内容的组织框架、研究方法与技术路线的描述、数据挖掘理论及应用的综述、不确定性理论、多目标优化的分类器方法、模糊多目标优化的分类器模型和算法、基于粗糙集和统计贡献度的特征选择算法、基于粗糙集预处理和粗近似的多目标优化的分类器模型和算法以及基于模糊化、核方法和惩罚因子的多目标优化的分类器模型和算法等内容。本书含有不确定性多目标优化的数据挖掘在信用评分、Web客户忠诚度分析、蛋白质交互的热点区域预测以及重大疾病的医疗诊断和预测等几个经典领域中的实际应用的描述。最后,通过对研究内容和实际应用效果的总结,展望了进一步研究和应用的方向。 本书可供从事数据挖掘、机器学
本书全面介绍了数据开发利用技术,包括大数据计算、大数据管理、大数据安全、大数据可视化、数据自治、数据爬虫、知识图谱、大数据挖掘、深度学习、区块链等技术,还介绍了数据产品生产技术。这些技术涵盖了数据获取与管理、数据分析与应用、数据安全与流通等数据开发利用的各个环节,形成一个较为完整的大数据技术体系。
特征选择是机器学习的重要研究内容,有着广泛的应用价值。特征选择主要从数据(尤其是高维数据)中选取有效特征来表示数据,从而提高机器学习算法的性能。《高维数据的特征选择:理论与算法》以重庆工商大学等单位的机器学习、图像处理课题为基础,系统地介绍特征选择的基本概念,以及相关的理论和算法,也对它的前沿研究(如无监督特征选择)和其在计算机视觉中的应用进行详细介绍,最后对特征选择的发展方向进行展望。 《高维数据的特征选择:理论与算法》理论联系实际,对教学、科研具有重要指导意义,可作为高等院校和科研机构从事机器学习的学者的参考书,亦可供从事大数据分析(如基因数据、计算机视觉)的专业技术人员参考。