Stata是一种功能全面的统计分析软件包,具有易操作、运行速度快、功能强大的特点,主要针对经济、管理、医学、农学、教育、市场研究、社会调查等行业和领域,是大数据时代为流行的计量软件之一。 全书内容共分17章。第1、2章介绍Stata操作入门及数据处理基础知识、描述性统计与图形绘制基础。第3~5章介绍假设检验、方差分析、相关分析等基础分析方法。第6~10章通过相关案例介绍经典及放松各种假定条件的回归分析,包括基本线性回归分析、线性回归分析诊断与处理、非线性回归分析、因变量离散回归分析、因变量受限回归分析等应用。第11~16章以典型案例讲解主成分分析与因子分析、聚类分析、时间序列数据分析、面板数据分析、生存分析、多方程模型等高级分析方法。第17章介绍如何使用Stata进行高质量的综合性研究,讲解研究方案设计、调查问卷的制
《大话数据结构【溢彩加强版】》以一个计算机教师的教学过程为场景,讲解数据结构和相关算法的知识。全书以趣味方式来叙述,大量引用各种各样的生活知识来类比,并充分运用全彩色图形语言来解读抽象内容,对数据结构所涉及的一些经典算法做出逐行分析、多算法比较。与同类图书相比,《大话数据结构【溢彩加强版】》内容有趣易读,算法讲解细致深入,是一本非常适合自学的读物。 对于学习数据结构来说,难点之一是对相关算法的理解。《大话数据结构【溢彩加强版】》创新性地采用全彩印刷,图表、流程、代码等内容结合色彩来重新进行约定和归纳,使得对一些难以理解的知识点的解析更加清晰顺畅,极大提升了阅读体验。 《大话数据结构【溢彩加强版】》主要内容包含:数据结构介绍、算法推导大O阶的方法;顺序结构与链式结构差异、栈与队列
本书旨在向广大有志于投身芯片设计行业的人士及正在从事芯片设计的工程师普及芯片设计知识和工作方法,使其更加了解芯片行业的分工与动向。 本书共分9个章节,从多角度透视芯片设计,特别是数字芯片设计的流程、工具、设计方法、仿真方法等环节。凭借作者多年业内经验,针对IC新人关心的诸多问题,为其提供了提升个人能力,选择职业方向的具体指导。本书第1章是对IC设计行业的整体概述,并解答了IC新人普遍关心的若干问题。第2章和第3章分别对数字IC的设计方法和仿真验证方法进行了详细阐述,力图介绍实用、规范的设计和仿真方法,避免了Verilog语法书中简单的语法堆砌及填鸭式的灌输。第4章是在前两章的基础上,通过实例进一步阐述设计方法中的精髓。第5章详细介绍了作为当今数字芯片主流的SoC芯片架构和设计方法,并对比了非SoC架构的设计,
《GraphPad Prism科技绘图与数据分析》以GraphPad Prism 9.4为软件平台,结合编者多年的数据分析经验,通过大量实例系统全面地介绍Prism在科研数据处理中的使用方法与技巧。全书共11章:第1~3章主要讲解GraphPad Prism的基础知识,包括用户界面、项目组成、图形的输出、数据的输入、数据表类型、图形的修饰与美化等;第4~11章结合Prism数据表的特点,分别讲解各类数据表的数据格式、数据表能够完成的图表绘制以及可以实现的统计分析等。通过阅读本书,可以帮助读者快速掌握GraphPad的应用,从而更好地处理和分析科研数据。 本书注重基础,内容翔实,突出示例讲解,既可以作为从事数据分析处理的科研工程技术人员的自学用书,还可以作为高等学校相关专业的本科生和研究生的教学用书。
本书以统计学史上著名人物的伟大成就为脉络,将数据分析这一学科的发展历程娓娓道来。从开普勒仰望星空拉开统计学序幕,贝叶斯提出主观概率,到人工智能、深度学习逐步渗透今天的日常生活。本书带领读者在数据科学的熠熠星光下,看透大数据的深邃内核。
本书以实战案例为主线,以函数理论基础为核心,引导读者从整体上理解Power Query的灵活应用,从实例中获得解决问题的思路和灵感。 本书共24章,分为原理篇、实战篇、函数篇、扩展篇,详细讲解了PQ的原理和函数应用。原理篇详细讲述三大数据结构(简称为三大容器)的原理和M函数的传参,实战篇通过案例讲函数,函数篇按照类名讲函数,扩展篇讲解自定义函数等灵活的应用。 本书的特点是,举一反三把逻辑原理讲透、用类比法强化记忆、案例配套在线视频。不管使用Excel还是PQ处理数据,不仅要求快,更要准确,本书列举了许多数据处理的思维和细节,提醒读者避坑。 本书面向会PQ界面操作的用户,作为从基础到中级水平的进阶参考书。
本书在前四版畅销书的基础上,根据SPSS 26.0软件升级的市场应用需求进行第5次升级修订。 本书结合具体的SPSS统计分析实例,图文并茂地介绍了**版本SPSS 26.0的各种统计分析方法,包括基本统计分析、参数与非参数检验、方差分析、相关分析、回归分析、多重响应分析、聚类分析、判别分析、因子分析、主成分分析、对应分析、时间序列模型、信度分析、生存分析和缺失值分析的原理和使用方法。全书注重内容的实用性,在详细介绍SPSS常用的操作功能基础上,通过一些综合应用案例(在医学、经济管理、自然科学和社会科学中的应用)来演示实际统计分析中SPSS的使用。 本书适用于SPSS软件17.0~26.0版本,作者录制了96个视频教学文件,读者可通过扫描各章节二维码阅读学习。本书可作为高校经济学、管理学、统计学、公共管理、社会学和卫生统计等专业学生学习大数
本书基于社会学领域学生和学者的需求,将统计学的理论概念和详细的技术指导有机结合起来,通过众多来自社会学不同领域的有趣示例来呈现丰富的统计方法和模型,鼓励读者在了解理论的同时学习应用Stata软件来实现研究的目的。本书除了用5个章节渐进式地详细阐述线性回归模型之外,还进一步涵盖logistic回归、多层次分析、面板数据分析、探索性因子分析、结构方程模型和验证性因子分析等内容。本书通过配套网站提供各章配套的测试题、视频、数据集和Stata代码,方便读者学习并检查学习效果。 本书可作为社会学领域本科生或研究生定量研究课程的教材或参考书,也可作为想要学习应用Stata软件进行定量研究的社会学者的参考书。
《算法竞赛入门经典 训练指南(升级版)》是《算法竞赛入门经典(第2版)》一书的重要补充,旨在补充原书中没有涉及或者讲解得不够详细的内容,从而构建一个更完整的知识体系。本书通过大量有针对性的题目,让抽象复杂的算法和数学具体化、实用化。 《算法竞赛入门经典 训练指南(升级版)》共包括6章,分别为算法设计基础、数学基础、实用数据结构、几何问题、图论算法与模型以及更多算法专题。全书通过206道例题深入浅出地介绍了上述领域的各个知识点、经典思维方式以及程序实现的常见方法和技巧,并在章末给出了丰富的分类习题,供读者查漏补缺和强化学习效果。 《算法竞赛入门经典 训练指南(升级版)》题目多选自近年来ACM/ICPC区域赛和总决赛真题,内容全面,信息量大,覆盖了常见算法竞赛中的大多数细分知识点。书中还给出了所有重
《matplotlib数据可视化实战》借助matplotlib讲解开展数据可视化实践所需要掌握的关键知识和技能,从设置图表基础元素(坐标轴、标签、颜色、数学符号等),到根据表现内容绘制不同类型的图表(折线图、条形图、圆饼图、小提琴图等),全面讲解了 matplotlib 的使用方法。为方便读者学习, 书中对相关操作都配以案例及代码进行讲解,读者可以根据自身需求,灵活使用其中的函数 和语句。 本书适合数据分析、数据可视化领域的爱好者、从业者阅读,也适合作为高校相关专业的教材。
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
对于任何依赖经常性收入和重复销售的企业来说,让客户保持活跃并持续购买是必不可少的。客户流失(或 流失 ),这种代价高昂且令人沮丧的事情是可以预防的。通过使用本书中介绍的技术,你可以识别客户流失的预警信号,并学会在客户离开之前识别并挽留他们。 《客户留存数据分析与预测》向开发人员和数据科学家传授经过实践证明的技术与方法,可以在客户流失发生之前阻止其发生。本书包含很多来自现实中的示例,介绍如何将原始数据转换为可衡量的行为指标、计算客户生命周期价值,并使用人口统计数据改进客户流失预测。通过遵循 Zuora 首席数据科学家 Carl Gold 的方法,你将获得高客户留存率带来的优势。 主要内容 ● 计算流失指标 ● 通过客户行为预测客户流失 ● 使用客户细分策略减少客户流失 ● 将客户流失分析技术应用于其他业务领域 ● 使用
● 如何使用R语言进行高级数据分析,涉及的技术包括广义线性模型、广义可加模型、混合效应模型、机器学习、并行处理 ● 如何使用R语言的数据可视化技术实现回归,如线性回归和高级回归,并了解回归样条和可加模型 ● 如何使用R语言实现机器学习,包含平行处理、降维、特征选取和分类 ● 如何使用R语言的多重插补技术解决数据缺失问题 ● 如何使用广义线性可加模型实现普通量、二值量和计次量的输出,如何使用自采样法(Bootstrapping)分析不确定性 ● 学习如何对个体内的变异性进行建模,进而捕捉个体在方法以及时间稳定性上的差异
SPSS高级建模技术可广泛应用于商业领域的量化分析。本书的**特色以精选的商用案例详解SPSS前沿建模技术在商业领域的综合应用,以期为通过建模量化分析改善商业运营水平管理,或提升核心竞争力的职场人士阅读参考。 全书共12章,第1章~第2章介绍SPSS快速入门和建模技术要点,后续各章节均以实际商业应用案例的形式详解SPSS在商用实践建模中的应用与分析。建模技术方面,本书系统介绍了神经网络多层感知器、径向基函数、决策树等热门大数据处理建模技术应用,以及SPSS专门用于市场营销的联合分析、直销模块分析等高级专业建模技术应用,也介绍了经典的线性回归分析、相关分析、因子分析、聚类分析、描述性分析、方差分析、交叉表分析等一般统计建模技术应用;精选的案例都是当下流行热门的商业运营领域,包括市场调研、市场营销、客户满意度调查
本书系统的介绍了Vue框架基础、框架应用、生态组成、项目实战、框架演进、Vue原理剖析及Vue框架的原理实现。 全书共分为8章:第1章为行业发展介绍,第2章为Vue 2.x的开发基础,第3章为Vue 2.x的组件开发,第4章为Vue CLI开发完全指南,第5章为Vue CLI项目实战,第6章为Vite Vue 3完全开发指南,第7章为Vue 3.x项目实战,第8章为实现原理介绍。书中主要内容包括:Web前端发展史、Vue的诞生、Vue 2.x基础指令、Vue 2.x常用API、Vue 2.x组件系统、Vue 2.x组件化实战、Vue CLI脚手架搭建、Vue Router 3.x路由系统、Vuex 3.x状态管理系统、Axios网络插件、ElementUI框架、Vue 2.x综合项目实战、Vue 3.x基础语法、Vue 3.x组合式API、Vue 3.x响应式API、Vite脚手架、Vue 3.x函数式编程、Vue Router 4.x路由系统、Vuex 4.x状态管理系统、Pinia状态管理系统、ElementPlus框架、Vue 3.x的综合项目实战、Vue 2.x的响应式数据原理、Vu
本书以达梦数据库DM8为蓝本,介绍达梦数据库的存储过程、存储函数、触发器等服务器端程序,以及Java、C、Python、PHP等高级语言基于达梦数据库的应用程序设计方法。本书主要包括:DM SQL程序结构、基本语法;存储过程、存储函数、触发器、包等高级对象的基本语法及应用方法;嵌入式SQL程序Pro *c组成、基本语法及应用方法;基于ODBC、JDBC、.NET Data Provider数据库访问接口标准的应用程序设计方法;PHP、Python、Go等高级语言访问达梦数据库的程序设计方法;达梦数据库数据装载及日志分析接口的程序设计方法。本书内容实用、示例丰富、语言通俗、格式规范,可作为相关专业的教材,也可作为工程技术人员的参考书。
《MATLAB函数及应用》以MATLAB R2020为平台编写,介绍MATLAB常用工具箱中常用的函数,并对每个函数的语法格式和应用进行详细介绍,让读者了解每个函数的功能与用法,从而领略MATLAB简单易用、处理功能强大等特点。 《MATLAB函数及应用》共14章,分别介绍矩阵相关操作函数、数据可视化函数、数据分析函数、概率统计函数、偏微分方程函数、优化函数、图像处理函数、神经网络函数、信号处理函数、控制系统函数、样条函数、小波变换函数、模糊逻辑函数、计算机视觉函数等内容。 《MATLAB函数及应用》适合MATLAB初级、中级和高级用户学习使用,也适合作为深入研究MATLAB软件的开发者的参考用书,同时也可作为一本全面涵盖MATLAB各项内容的快速查询手册。
本书根据计算机专业“数据库原理”课程的教学大纲编写,作者在原书《数据库原理与应用——习题与解析》的基础上,根据读者的反馈意见大幅修订和更新了本书习题,并补充近年的研究生入学考试试题,进一步体现了教学改革的成果。 全书共分8章,分别介绍数据库的基础知识、关系数据库、SQL语言、关系系统及其查询优化、关系数据理论、数据库设计、数据库保护和面向对象数据库系统。每章由基本知识点和例题分析组成,前者高度概括和疏理本章应重点应重点掌握的相关知识;后者详尽地解析精选的典型习题。本书将使学生充分掌握“数据库原理”课程求解问题的技巧与方法,深化对基本概念的理解,切实提高分析问题和解决问题的能力。
本书是一本为Scala和Spark初学者准备的入门书籍,很适合准备踏入大数据开发领域的新手和其他对此感兴趣的读者阅读。本书在内容上遵循从宏观到微观、由浅入深递进式的讲解方式,涵盖了Spark入门开发所需的Scala基础知识。具体来说,本书按照如下顺序进行介绍。 首先,前三章从宏观上介绍了Scala语言,包括初识Scala、安装Scala及使用Scala Shell工具。 其次,第四章到第十二章是本书的重点,详细介绍了与Spark开发密切相关的Scala语法,包括变量、数据类型、条件语句、代码块、函数、集合、循环、类和包,以及与异常处理相关的内容,每一章都对某个语法点进行深入探索。第十三章介绍了如何把写好的Scala代码进行编译和打包。 后,第十四章介绍了Spark的入门实践,将前面章节所学到的Scala知识运用到Spark开发中。 此外,本书提供了丰富生动的代码示例和章末练习,
本书主要介绍大数据分析与应用,包括数据驱动程序设计、数据前处理、统计机器学习基础、无监督式学习、监督式学习、其他学习方式(集成学习、深度学习、强化学习)等6章内容。 本书特色:文字说明、程序代码与执行结果等交叉呈现,有助于阅读理解;提供来自不同领域的资料处理与分析范例;同时掌握数据分析两大主流工具 R 与 Python;凸显第四代与第三代程序语言的不同之处。 本书读者对象:计算机、人工智能、大数据等相关专业的本科生、研究生,对大数据分析与应用感兴趣的社会读者,以及大数据分析与应用行业的工程技术人员。