本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
《深度学习与图像识别:原理与实践》 这是一部从技术原理、算法和工程实践3个维度系统讲解图像识别的著作,由阿里巴巴达摩院算法专家、阿里巴巴技术发展专家、阿里巴巴数据架构师联合撰写。 在知识点的选择上,本书广度和深度兼顾,既能让完全没有基础的读者迅速入门,又能让有基础的读者深入掌握图像识别的核心技术;在写作方式上,本书避开了复杂的数学公式及其推导,从问题的前因后果 、创造者的思考过程,利用简单的数学计算来做模型分析和讲解,通俗易懂。更重要的是,本书不仅仅是聚焦于技术,而是将重点放在了如何用技术解决实际的业务问题。 全书一共13章: 第1-2章主要介绍了图像识别的应用场景、工具和工作环境的搭建; 第3-6章详细讲解了图像分类算法、机器学习、神经网络、误差反向传播等图像识别的基础技术及其原理; 第7
(1) 本书内容全面,详细介绍了经典自动控制理论、状态空间控制理论、离散数字系统控制理论技术和非线性系统分析的基本知识。整本书结构清晰明了、内容丰富,融会贯通了由基本概念到实际应用的思想。本书浅显易懂,数学理论分析过程翔实, 读者只需要的微分方程、线性代数和拉普拉斯变换基础就可以理解其中的知识,可以作为大多数高校的教材。(2) 每章的结构安排清晰合理。每章的简介(Introduction)部分都提纲挈领地给出了章节的知识背景和控制要求,以及章节的主要内容结构分布。在每章的各个小节,作者首先详细介绍各种理论、技术,紧接着给出翔实的例子,避免了读者局限于抽象的理论。而每章末尾对关键的知识点及时地进行了小结,有助于加深读者对所学知识的了解,形成完整的知识理论体系。(3) 本书较早地引入了MATLAB的使用,并且在